## Chemistry

## PRACTICE PACKET

 Unit 5: Moles \& StoichiometryGFM (Molar Mass) Calculations - SHOW ALL WORK!
Calculate the gram formula mass of the following chemicals.

$$
\mathrm{Br}=2 \times 79.904=59.814 \mathrm{~g}
$$

1) $\mathrm{Br}_{2}$
2) CsOH

$$
\begin{aligned}
& 20 \mathrm{H}=1 \times 132.905=132.905 \\
& \mathrm{cs}=1 \times 15.994=\frac{1594}{1.00794} \\
& 0=1 \times 1.00994=19.912345
\end{aligned}
$$

3) $\mathrm{BaCl}_{2}$
4) $\mathrm{FeF}_{3}$
5) $\mathrm{AlCl}_{3}$
6) $\mathrm{Al}_{2} \mathrm{O}_{3}$

$$
\begin{aligned}
& 135.540599 \\
& A_{1}=2 \times 26.954=53.96308 \\
& 0=3 \times 15.9944=\frac{47.998}{1 / 0.961}
\end{aligned}
$$

Percent Composition


## Regents Chemistry

## Crystal Hydrates (\% Composition)

1. Base your answer to the following question on A hydrate is a compound with water molecules incorporated into its crystal structure. In an experiment to find the percent by mass of water in a hydrated compound, the following data were recorded:

| Mass of crucible + hydrated crystals before heating | 7.50 grams |
| :--- | :--- |
| Mass of crucible | 6.90 grams |
| Mass of crucible + anhydrous crystals after heating | 7.20 grams |

What is the percent by mass of water in the hydrate?
A) $72 . \%$
B) $50 . \%$
C) $96 . \%$
D) $8.0 \%$
2. The percent by mass of water in the hydrate $\mathrm{Na}_{2} \mathrm{SO}_{4} \bullet 10 \mathrm{H}_{2} \mathrm{O}$ is closest to
A) $18 \%$
B) $44 \%$
C) $76 \%$ D) $\overparen{56 \%}$
3. What is the percent by mass of water present in 1.0 mole of $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ?
A) $79 \%$
B) $10 . \%$
C)
$12 \%$ D) $21 \%$
4. A student obtained the following data to determine the percent by mass of water in a hydrate.

| Mass of empty crucible + cover | 11.70 g |
| :---: | :---: |
| Mass of crucible + cover + hydrated salt before heating | 14.90 g |
| Mass of crucible + cover + anhydrous salt after thorough heating | 14.53 g |

What is the approximate percent by mass of the water in the hydrated salt?
A) $12 \%$
B) $88 \%$
C) $98 \%$
D) $2.5 \%$
5. A 4.4 gram sample of a hydrate was heated until the water of hydration was driven off. The anhydrous compound remaining had a mass of 3.3 grams. What is the percentage by mass of water in the hydrate?
A) $25 \%$
B) $33 \%$
C) $67 \%$
D) $75 \%$
6. A 20. gram sample of a hydrate is heated until all the water of hydration is driven off. The mass of the anhydrous compound remaining is 15 grams. What is the percent by mass of water in the hydrate?
A) $75 \%$
B) $15 \%$
C) $25 \%$
D) $33 \%$
7. Which species contains the greatest percent by mass of hydrogen?
A) $\mathrm{H}_{3} \mathrm{O}^{+}$
B) $\mathrm{H}_{2} \mathrm{O}_{2}$
C) $\mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{OH}^{-}$
8. A 1.20 -gram sample of a hydrated salt is heated to a constant mass of 0.80 gram. What was the percent by mass of water contained in the original sample?
A) 20 .
B) 33
50.
D) 67
9. A student determining the percent by mass of water in a hydrated crystal obtained the following data.
Mass of crystal before heating. .5 .0 g
Mass of crystal after 1st heating .4 .0 g
Mass of crystal after 2nd heating.............. 4.0 g
What is the percent by mass of water in the hydrate?
A) $0.80 \%$
B) $0.20 \%$
C) $80 . \%$
D) $20 . \%$
10. The percent by mass of water in $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (formula mass $=243$ ) is equal to
A) $\frac{18}{243} \times 100$
B) $\frac{243}{18} \times 100$
C) $\frac{243}{36} \times 100$


## Crystal Hydrates (\% Composition)

11. A 10.0 gram sample of a hydrate was heated until all the water of hydration was driven off. The mass of anhydrous product remaining was 8.00 grams. What is the percent of water in the hydrate?
A) $25.0 \%$
B) $12.5 \%$
C) $80.0 \%$
D) $20.0 \%$
12. A 60. gram sample of $\mathrm{LiCl} \cdot \mathrm{H}_{2} \mathrm{O}$ is heated in an open crucible until all of the water has been driven off. What is the total mass of LiCl remaining in the crucible?
(A) 42 .
B) 24 g
C) $18 \mathrm{~g} \quad \mathrm{D}) 60 \mathrm{~g}$
13. A student determining the percent by mass of water in a hydrated sample of salt obtained the following data:
Mass of hydrate 6.25 g
Mass of sample after 1st heating 5.12 g
Mass of sample after 2nd heating 5.12 g
The correct expression for obtaining the percent by mass of water in the sample is
A) $\frac{6.25 \mathrm{~g}}{1.13 \mathrm{~g}} \times 100$
B) $\frac{5.12 \mathrm{~g}}{6.25 \mathrm{~g}} \times 100$
C) $\frac{6.25 \mathrm{~g}}{5.12 \mathrm{~g}} \times 100<\frac{1.13 \mathrm{~g}}{6.25 \mathrm{~g}} \times 100$
14. An 8.24-gram sample of a hydrated salt is heated until it has a constant mass of 6.20 grams. What was the percent by mass of water contained in the original sample?
A) $75.2 \%$
B) $14.1 \%$
C) $24.8 \%$
D) $32.9 \%$

Base your answers to questions 15 and 16 on the table below shows the data collected during the heating of a 5.0 gram sample of a hydrated salt.

| Mass of <br> Salt $(\mathrm{g})$ | Heating Time <br> $(\mathrm{min})$ |
| :---: | :---: |
| 5.0 | 0.0 |
| 4.1 | 5.0 |
| 3.1 | 10. |
| 3.0 | 15. |
| 3.0 | 30. |
| 3.0 | 60. |

15. What is the percent of water in the original sample?
A) $82 . \%$
C) $60 . \%$

16. After 60 . minutes, how many grams of water appear to remain in the salt?
A) 0.00
B) 2.0
C) 1.9
D) 0.90

Grams to Moles \& Moles to Grams
Convert the following from grams to moles:
$\begin{array}{ll}\text { 1) } 15.0 \mathrm{~g} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\ \mathrm{GFM} / 180.157689 / \mathrm{mol} & \mathrm{C}_{1} 6 y \\ +12 x \\ 06 x\end{array}$
2) 25.0 g NaOH

GEM 301.99711

$$
\text { mole }=\frac{15 g}{180.157688 / \mathrm{nd} \mathrm{~mol}}=: 0832
$$

3) 54.0 g HCl

$$
G F \mu 36.46094 \quad \text { mole }=\frac{54}{36.46094}=1.481 \mathrm{md}
$$

4) $13.0 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { 4) } 13.0 \mathrm{~g} \mathrm{H} \mathrm{H} \mathrm{O} \\
& \mathrm{GF} \mathrm{M} 18.01528 \quad \mathrm{~mole}=\frac{\beta}{18.01528}=0.7216 \mathrm{md} \\
& \text { 5) } 23.0 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}
\end{aligned}
$$

5) $23.0 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

GEM / $64.08989 / \mathrm{nd}$

$$
\text { mole }=\frac{23}{164.0898}=0.1401671 \mathrm{sd}_{\mathrm{L}} \mathrm{~mol}
$$

6) $1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
G F M
$$

7) $0.105 \mathrm{~g} \mathrm{O}_{2}$

Convert the following from moles to grams:

1) 0.500 moles RiF

$$
\begin{aligned}
& \text { 1) } 0.500 \text { moles Li } \\
& G F M 25.9391 \quad \text { masS }=0.500 \times 25.9391=12.9697 \mathrm{~g} \\
& \text { 2) } 0.1188 \text { moles } \mathrm{NaOH} \\
& G F M 31.99711 \quad \text { mass }=0.1188 \times 31.99711=4.75 \mathrm{~g}
\end{aligned}
$$

3) 4.00 moles KCl

$$
\text { 3) } 4.00 \text { moles } \mathrm{KCl} \text { GM } 74.5513 \text { maSS }=4 \times 74.5513=298.2052
$$

4) 10.0 moles $\mathrm{H}_{2} \mathrm{O}_{2}$

$$
\begin{aligned}
& \text { 4) } 10.0 \text { moles } \mathrm{H}_{2} \mathrm{O}_{2} \\
& \text { GFM } 34.01468 \text { mass }=10 \times 34.014(8=340.1468 \mathrm{~g} 9.8
\end{aligned}
$$

5) 13.0 moles $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
\begin{aligned}
& \text { 5) } 13.0 \text { moles } \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& G F M 100.98 \mathrm{~V} 24 \text { mass }=13 \times 100.9882 \mathrm{~J}=1,377.8532 \mathrm{~g} \\
& \text { 6) } 28.0 \text { moles } \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

6) 28.0 moles $\mathrm{H}_{2} \mathrm{O}$

GFM 17.00734 mass $=28 \times 17.00734=476.20552 \mathrm{y}$
7) 0.800 moles $\mathrm{NH}_{3}$

$$
\begin{aligned}
& \text { 7) } 0.800 \text { moles } \mathrm{NH}_{3} \\
& G F M 17.249 \text { mass }_{6}=0.8 \times 17.2149=13.79592 \mathrm{~g},
\end{aligned}
$$

Grams, Molecules, and Moles Worksheet
Need have

1) How many molecules are there in 32.0 grams of $\mathrm{FeF}_{3}$ ?

$$
\begin{aligned}
\text { mol }=\frac{32}{112.8422}=0.2836 \mathrm{~mol} \text { molecules } & =0.2836 \times\left(6.02 \times 10^{23}\right) \\
& =11.707 \times 10^{23}
\end{aligned}
$$

2) How many molecules are there in 250 . grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ?

$$
\begin{aligned}
\mathrm{mol}=\frac{250}{124.076}=2.0149 \mathrm{~mol} \text { molecules } & =2.0149 \times\left(6.02 \times 10^{23}\right) \\
& =1.213 \times 10^{24}
\end{aligned}
$$

3) How many grams are there in $4.60 \times 10^{24}$ atoms of silver?

$$
\text { moles }=\frac{4.60 \times 10^{24}}{6.02 \times 10^{23}}=7.641 \mathrm{~mol}
$$

$$
\begin{aligned}
\text { mass } & =\text { moles } \times g t m \\
& =7.641 \times 107.868
\end{aligned}
$$

4) How many grams are there in $4.70 \times 10^{23}$ molecules of $\overline{\overline{\mathrm{Ag}} \mathrm{AO}_{3} \text { ? }}$

$$
\text { moles }=\frac{4.70 \times 10^{23}}{6.02 \times 10^{23}}=0.781 \mathrm{~mol}
$$

$$
\begin{aligned}
\text { mass } & =\text { moles } \times \mathrm{g} f \mathrm{~m} \\
& =0.781 \mathrm{~mol} \times 169.8729 \\
& =132.67 \mathrm{~g}
\end{aligned}
$$

5) How many grams are there in $5.70 \times 10^{23}$ molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$ ?

$$
\begin{aligned}
\text { mass } & =\text { moles } \times \mathrm{g} \mathrm{fm} \\
& =0.947 \text { mol } \times 98.07848 \\
& =92.88 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& \text { moles }=\frac{221}{187.558}=1.178 \mathrm{~mol} \quad \text { molecules }=1.178 \times\left(6.02 \times 10^{23}\right) \\
& =7.09 \times 10^{23} \text { molewtes }
\end{aligned}
$$

7) How many grams are there in $4.90 \times 10^{25}$ molecules of $\mathrm{H}_{2}$ ?

$$
\begin{aligned}
& \text { 7) How many grams are there in } 4.90 \times 10^{\circ \circ} \text { molecules of } \mathrm{H}_{2} ? \\
& \text { moles }=\frac{41.90 \times 10^{25}}{6.02 \times 10^{23}}=81.4 \mathrm{moleg} \quad \mathrm{gas}=8 \mathrm{~m} \\
&=81.4 \times 2.01588 \\
& \text { 8) How many molecules are there 230. grams of Cockle? }=164.09 \mathrm{~g}
\end{aligned}
$$

## Regents Chemistry

## Mass-Mole Calculations

1. Which sample contains a mole of atoms?
A) 23 g Na
B) 78 g K
C) 42 g Kr
D) 24 g C
2. The number of moles of molecules in a 12.0-gram sample of $\mathrm{Cl}_{2}$ is
A) $\underset{\text { moles }}{12.0 \times 35.5}$
B) $\frac{12.0}{71.0} \mathrm{~mole}$
C) 12.0 moles
D) $\frac{12.0}{35.5}$ mole
3. One mole of $\mathrm{O}_{2}$ has approximately the same mass as one mole of
A) S
B) $\mathrm{Cl}_{2}$
C) $\mathrm{CH}_{4}$
D) LiH
4. The total number of moles represented by 20 grams of $\mathrm{CaCO}_{3}$ is
A) 1
B) 2
C) 0.1
D) 0.2
5. What is the mass in grams of 2.0 moles of $\mathrm{NO}_{2}$ ?
A) 30 .
B)

D) 46
6. What is the total mass of oxygen in 1.00 mole of $\mathrm{Al}_{2}\left(\mathrm{CrO}_{4}\right)_{3}$ ?
A) 48.0 g
B) 192 g
C) 112 g
D) 64.0 g
7. What is the total mass of 2.0 moles of $\mathrm{H}_{2}(\mathrm{~g})$ ?
A) $1.0 \mathrm{~g} \mathrm{B)} 2.0 \mathrm{~g}$
C) $3.0 \circ$ D) 4.0 g
8. What is the total mass in grams of 0.75 mole of SO 2 ?
A) 16 g
B) 24 g
9. What is the mass in grams of 1.00 mole of $\mathrm{O}_{2}$ gas?
A) 32.0
B) 22.4
C) 11.2
D) 16.0
10. What is the gram-molecular mass of a compound if 5 moles of the compound has a mass of 100 grams?
A) 100 g
B) 5 g
C) 500 g
D) 20 g
11. What is the total mass of iron in 1.0 mole of $\mathrm{Fe}_{2} \varnothing$ 3?
A) 72 g
B) 56 g
C) 160 g
(D) 112 g
12. Which sample contains the same number of atoms as a gram of He ?
A) 9 g of F
B) 7 g of Li
(C) 4 got
D) 6 g of C
13. The gram molecular mass of $\mathrm{CO}_{2}$ is the same as the gram molecular mass of
A) C $_{3} \mathrm{H}_{8}$
B) $\mathrm{SO}_{2}$
14. Which quantity is equivalent to 39
A) 1.0 mole
B) 2.0 moles
C) 0.50 mole
D) 1.5 moles
15. What is the total number of moles in 80.0 grams of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ (gram-formula mass $=64.5$ grams/mole)?

$\underset{\text { Balancing Equations }}{2} \stackrel{4}{2}$

2) $6 \mathrm{AgI}+1 \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3} \rightarrow 2 \mathrm{FeI}_{3}+\frac{3}{6} \mathrm{Ag}_{2} \mathrm{CO}_{3}$

$$
\begin{array}{l|l}
\text { Ag } \times 6 \\
I & \text { Ag } 2 \\
\hline \text { Fe } 2 & 6 \\
\mathrm{CO}_{3} 3 & \text { Fe }
\end{array}
$$

3) $\perp \mathrm{v}_{2} \mathrm{O}_{5}+5 \mathrm{CaS} \rightarrow 5 \mathrm{CaO}+\perp \mathrm{v}_{2} \mathrm{~S}_{5}$

$$
\begin{array}{l|l}
V 2 & V 2 \\
05 & 0 \times 5 \\
c a+5 & c a \times 5 \\
5 \times 5 & 55
\end{array}
$$

4) $2 \mathrm{NaNO}_{3}+1 \mathrm{PbO} \rightarrow \perp \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\perp \mathrm{Na}_{2} \mathrm{O}$


| $\mathrm{Ag}+3$ | Ag 3 |
| :--- | :--- |
| $\mathrm{Br} \times 3$ | Br |
| Ga 1 | Ga |
| PO 1 | PO 1 |

Regents Chemistry

Balancing Equations Practice

1. Given the balanced equation with an unknown compound represented by $X$ :

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq}) \xrightarrow{\text { enzyme }} 2 \mathrm{X}+2 \mathrm{CO}_{2}(\mathrm{~g})
$$

Which compound is represented by $X$ ?
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{aq})$
B) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})$
C) $\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}(\mathrm{aq})$
D) $\mathrm{CH}_{2}(\mathrm{OH})_{4}(\mathrm{aq})$
2. Given the incomplete equation for the combustion of ethane:
$2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6$
What is the formula of the missing product?
A) $\mathrm{H}_{2} \mathrm{O}_{2}$
B) HCOOH
C) $\mathrm{CH}_{3} \mathrm{OH}$
D) $\mathrm{H}_{2} \mathrm{O}$
3. Given the unbalanced equation:
$\qquad$ $\mathrm{Fe}_{2} \mathrm{O}_{3}+$ $\qquad$ $\mathrm{CO} \rightarrow$ $\qquad$ $\mathrm{Fe}+\ldots \mathrm{CO}_{2}$

When the equation is correctly balanced using the smallest whole-number coefficients, what is the coefficient of CO ?
A) 1
B) 2
C) 3
D) 4
4. Given the unbalanced equation:
$\qquad$ $\mathrm{Al}+$ $\qquad$ $\mathrm{CuSO}_{4} \rightarrow$ $\qquad$ $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+$ $\qquad$ Cu

When the equation is balanced using the smallest whole-number coefficients, what is the coefficient of Al ?
A) 1
B) 2
C) 3
D) 4
5. Given the unbalanced equation:
$\qquad$ $\mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow$ $\qquad$ $\mathrm{MgCl}_{2}(\mathrm{~s})+\quad \mathrm{O}_{2}(\mathrm{~g})$
What is the coefficient of $\mathrm{O}_{2}$ when the equation is balanced correctly using the smallest whole number coefficients?
A) 1
B) 2
(C) 3
D) 4 I $M_{g}\left(\mathrm{ClO}_{3}\right)_{\alpha} \rightarrow \mathrm{Mg}_{\mathrm{g}} \mathrm{l}_{2}+3 \mathrm{O}_{21}$



## Balancing Equations Practice

6. Given the unbalanced equation:
$\_\mathrm{Al}(\mathrm{s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \_\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$

When this equation is correctly balanced using smallest whole numbers, what is the coefficient of $\mathrm{O}_{2}(\mathrm{~g})$ ?
A) 6
B) 2
C) 3
D) 4
7. Given the unbalanced equation:

$$
\ldots \mathrm{Na}+\underset{2}{ } \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\ldots \mathrm{NaOH}
$$

When the equation is correctly balanced using the smallest whole-number coefficients, the coefficient for $\mathrm{H}_{2} \mathrm{O}$ is
A) 1
B) 2
C) 3
D) 4
8. Given the unbalanced equation:

$$
\ldots \mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})
$$

When the equation is balanced using smallest whole numbers, the coefficient of $\mathrm{N}_{2}(\mathrm{~g})$ will be
A) 1 $\square$ C) 5
D) 4
9. Given the unbalanced equation:
$\qquad$ $\mathrm{CaSO}_{4}+$
$\qquad$ $\mathrm{AlCl}_{3} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+$ $\qquad$ $\mathrm{CaCl}_{2}$

What is the coefficient of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ when the equation is completely balanced using the smallest whole-number coefficients?
A) 1
B) 2
C) 3
D) 4
10. Given the unbalanced equation:

$$
\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

When the equation is correctly balanced, the coefficient of $\mathrm{H}_{2} \mathrm{O}$ will be
A) 1
B) 2

D) 4
11. When the equation
 $\mathrm{L}_{\mathrm{LO}}^{2}$ is correctly balanced, what is the coefficient of $\mathrm{CuSO}_{4}$ ?
A) 1
B) 2
C) 3
D) 4


Identifying Reaction Types
Determine if the following are synthesis (S), decomposition (D), single replacement (SR), or double replacement (DR) reactions.
ex: 1. $2 \mathrm{NaClO}_{3} \rightarrow 2 \mathrm{NaCl}+3 \mathrm{O}_{2}$ $\qquad$ D
2. $2 \mathrm{AgNO}_{3}+\mathrm{Ni} \rightarrow \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$ $\qquad$
3. $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ $\qquad$
4. $\mathrm{BaCO}_{3} \rightarrow \mathrm{BaO}+\mathrm{CO}_{2}$ $\qquad$
5. $4 \mathrm{Cr}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}$ $\qquad$
6. $\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$ $\qquad$ $5 R$
7. $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ $\qquad$ $D R$
8. $\mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$

9. $8 \mathrm{Cu}+\mathrm{S}_{8} \rightarrow 8 \mathrm{CuS} \quad S$
10. $\mathrm{P}_{4}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5}$ $\qquad$
11. $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$ $\qquad$
12. $3 \mathrm{AgNO}_{3}+\mathrm{K}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ag}_{3} \mathrm{PO}_{4}+3 \mathrm{KNO}_{3}$

13. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ $\qquad$
14. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{2}$
15. $2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$ $\qquad$
16. $\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2}$
17. $\mathrm{F}_{2}+2 \mathrm{HBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{HF}$

18. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CaCO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{ZnCO}_{3}$

19. $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
20. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$


Balancing Different Types of Reactions
Balance the following equations and indicate the type of reaction taking place:

2)

3)


Type of reaction: Single $R$
4) $\quad 山 \mathrm{C}_{2} \mathrm{H}_{4}+\stackrel{3}{\mathrm{X}} \mathrm{O}_{2} \rightarrow \underset{\text { 立 }}{ } \mathrm{CO}_{2}+\frac{2}{\lambda} \mathrm{H}_{2} \mathrm{O}$

C 2
H 4
$0 \not 26$

C $\times 2$
$\mathrm{H}_{2} 24$
026

Type of reaction: $\qquad$

## Regents Chemistry

## Mole-Mole Calculations

1. Which sample contains a mole of atoms?
A) 23 g Na
B) 78 g K
C) 42 g Kr
D) 24 g C
2. The number of moles of molecules in a 12.0-gram sample of $\mathrm{Cl}_{2}$ is
A) $12.0 \times 35.5$ moles
B) $\frac{12.0}{71.0} \mathrm{~mole}$
D) $\frac{12.0}{35.5}$ mole
C) 12.0 moles
3. One mole of $\mathrm{O}_{2}$ has approximately the same mass as one mole of
(A) S
B) $\mathrm{Cl}_{2}$
C) $\mathrm{CH}_{4}$
D) LiH
4. The total number of moles represented by 20 grams of $\mathrm{CaCO}_{3}$ is
A) 1
B) 2
C) 0.1 D) 0.2
5. What is the mass in grams of 2.0 moles of $\mathrm{NO}_{2}$ ?
A) 30 .
B) 60
C) 92
D) 46
6. What is the total mass of oxygen in 1.00 mole of $\mathrm{Al}_{2}\left(\mathrm{CrO}_{4}\right)_{3}$ ?
A) 48.0 g
B) 192 g
C) 112 g
7. What is the total mass of 2.0 moles of $\mathrm{H}_{2}(\mathrm{~g})$ ?
A) 1.0 g
B) 2.0 g
C) $3.0 \& \mathrm{D}) 4.0 \mathrm{~g}$
8. What is the total mass in grams of 0.75 mole of $\mathrm{SO}_{2}$ ?
A) 16 g
B) 24 g
C) $32 \mathrm{D}, \stackrel{\mathrm{D}}{48 \mathrm{~g}}$
9. What is the mass in grams of 1.00 mole of $\mathrm{O}_{2}$ gas?
A) 32.0 B
22.4
C) 11.2
D) 16.0
10. What is the gram-molecular mass of a compound if 5 moles of the compound has a mass of 100 grams?
A) 100 g
B) 5 g
C) 500 g
D) 20 g
11. What is the total mass of iron in 1.0 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ?
A) 72 g
B) 56 g
C) 160 g
D) 112 g
12. Which sample contains the same number of atoms as a gram of He ?
A) 9 g of F
B) 7 g of Li
(F) 4 g of O
D) 6 g of C
13. The gram molecular mass of $\mathrm{CO}_{2}$ is the same as the gram molecular mass of
A) $\overline{\mathrm{C}_{3} \mathrm{Hr}}$
B) $\mathrm{SO}_{2}$
C) CO
D) $\mathrm{C}_{2} \mathrm{H}_{6}$
14. Which quantity is equivalent to 39 grams of LiF ?
A) 1.0 mole
B) 2.0 moles
C) 0.50 mole
D) 1.5 moles
15. Given the balanced equation representing the reaction between methane and oxygen:
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
According to this equation, what is the mole ratio of oxygen to methane?
$\frac{\text { A) } \frac{2 \text { moles } O_{2}}{1 \text { mola } \mathrm{CH}_{1}}}{\text { C) } \frac{2 \text { grams } \mathrm{O}_{2}}{1}}$
B) $\frac{1 \text { mole } \mathrm{O}_{2}}{2 \text { moles } \mathrm{CH}_{4}}$
C) $\frac{2 \text { grams } \mathrm{O}_{2}}{1 \text { gram } \mathrm{CH}_{4}}$
D) $\frac{1 \text { gram } \mathrm{O}_{2}}{2 \text { grams } \mathrm{CH}_{4}}$
16. Given the balanced equation representing a reaction:
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{NaOH} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{Na}_{2} \mathrm{SO}_{4}$

The mole ratio of NaOH to $\mathrm{Al}(\mathrm{OH})_{3}$ is
A) $1: 3$
B) $1: 1$
C) $3: 2 \mathrm{D} \sim 3: 1$
17. Given the balanced equation representing a reaction:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
What is the total number of moles of $\mathrm{O}_{2}(\mathrm{~g})$ required for the complete combustion of 1.5 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$
(g)?
A) .30 mol
B) 1.5 mol
C) 4.5 mol
D) 7.5 mol
18. Given the balanced equation representing a reaction: $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
What is the mole ratio of $\mathrm{CO}(\mathrm{g})$ to $\mathrm{CO}_{2}(\mathrm{~g})$ in this reaction?
A) $2: 1$
B) $1: 2$ C) $1: 1$ $\qquad$

## Regents Chemistry Mass-Mole-Molecule Calculations

1. Given the balanced equation representing a reaction:
$\underset{\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\text { heat }}{x+88} \quad \frac{200}{112}$ What is the total mass of $\mathrm{CaO}(\mathrm{s})$ that reacts completely with 88 grams of $\mathrm{CO}_{2}(\mathrm{~g})$ to produce 200. grams of $\mathrm{CaCO}_{3}(\mathrm{~s})$ ?
A) 288 g
B) 56 g
C) 112 g
D) 88 g
2. Given the balanced equation representing a reaction:
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
What is the total mass of water formed when 8 grams of hydrogen reacts completely with 64 grams of oxygen?
 $=1.4985 \times 31.9998=47.949$
3. Given the reaction: Ans
$H 2 \times 1.0079=$
mots $=\frac{\text { mass }}{\mathrm{gf}}$
$2 \mathrm{H}_{2}+\frac{x}{\mathrm{O}_{2}} \rightarrow \frac{2.997}{2 \mathrm{H}_{2} \mathrm{O}}$ $=\frac{54}{18.0198}$

The total number of grams of $\mathrm{O}_{2}$ needed to produce 54 grams of water is
A) 48
B) 61
C) 75
D) $36 \frac{x}{1}=\frac{2.997}{2}$
4. Given the balanced equation:

$$
\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{aligned}
\frac{3 x}{2} & =\frac{2.997}{2} \\
x & =1.4985
\end{aligned}
$$

moles

What is the total number of grams of $\mathrm{H}_{2} \mathrm{O}$ produced when 116 grams of the product, NaCl , is formed?
A) 9.0 g
B) 54 g
C) 18 g D) 36 g
5. Given the reaction:

$$
\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}
$$

What is the total mass of $\mathrm{H}_{2} \mathrm{O}$ produced when 32 grams of Cu is completely consumed?
A) 18 g
B) 72 g
C) 36 g
D) 9.0 g
6. Given the balanced equation:

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

What total mass of iron is necessary to produce 1.00 mole of copper?
A) 55.8 g
B) 112 g
C) 192 g
D) 26.0 g
7. Given the reaction:

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

What is the minimum number of grams of oxygen gas required to produce 1.00 mole of aluminum oxide?
A) 32.0 g
B) 192 g
C) 96.0 g
D) 48.0 g
8. Given the reaction:

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

What is the total number of moles of aluminum oxide that can be formed when 54 grams of aluminum reacts completely with oxygen?
A) 1.0 mole
B) 2.0 moles
C) 3.0 moles
D) 4.0 moles
9. Given the reaction:

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What is the total number of grams of $\mathrm{O}_{2}(\mathrm{~g})$ needed to react completely with 0.50 mole of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$ ?
A) $40 . \mathrm{g}$
B) $80 . \mathrm{g}$
C) 160 g
D) $10 . \mathrm{g}$
10. According to the reaction

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl},
$$

the production of 2.0 moles of HCl would require 70. grams of $\mathrm{Cl}_{2}$ and
A) 1.0 g of $\mathrm{H}_{2}$
B) 2.0 g of $\mathrm{H}_{2}$

## Regents Chemistry

Moles-Liters Calculations

1. Which gas sample at STP has the same total number of molecules as 2.0 liters of $\mathrm{CO}_{2}(\mathrm{~g})$ at STP?
A) 2.0 L of $\mathrm{Cl}_{2}(\mathrm{~g})$
B) 6.0 L of $\mathrm{He}(\mathrm{g})$
C) $5.0 \mathrm{~L}^{\text {of }} \mathrm{CO}_{2}(\mathrm{~g})$
D) 3.0 L of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
2. At STP, 1.0 liter of helium contains the same total number of atoms as
A) T .0 L of Ne
B) 2.0 L of Kr
C) 0.5 L of Rn
D) 1.5 L of Ar
3. What is the total volume occupied by 132 grams of $\mathrm{CO}_{2}(\mathrm{~g})$ at STP?
A) 44.8 L
B) 67.2 I
C) 22.4 L
D) 33.6 L
4. At STP, $3 \times 10^{23}$ molecules of $\mathrm{SO}_{2}(\mathrm{~g})$ occupy the same volume as
A) 1 mole of $\mathrm{H}_{2}(\mathrm{~g})$
B) $6 \times 10^{23}$ molecules of $\mathrm{H}_{2}(\mathrm{~g})$
C) 0.5 mole of $\mathrm{H}_{2}(\mathrm{~g})$
D) 4 grams of $\mathrm{H}_{2}(\mathrm{~g})$
5. The volume occupied by $9.03 \times 10^{23}$ molecules of $\mathrm{N}_{2}$ gas at STP is closest to
A) 0.500 liter
B) 33.6 liters
C) 1.50 liters
D) 22.4 liters
6. The table below shows the temperature, pressure, and volume of five samples.

| Sample | Substance | Temperature <br> $(\mathbf{K})$ | Pressure <br> $($ atm $)$ | Volume <br> $(\mathbf{L})$ |
| :---: | :---: | :---: | :---: | :---: |
| $A$ | He | 273 | 1 | 22.4 |
| $B$ | $\mathrm{O}_{2}$ | 273 | 1 | 22.4 |
| $C$ | Ne | 273 | 2 | 22.4 |
| $D$ | $\mathrm{~N}_{2}$ | 546 | 2 | 44.8 |
| $E$ | Ar | 546 | 2 | 44.8 |

Which sample contains the same number of molecules as sample $A$ ?
A) $E$
B) $B$
C) $C$
D) $D$
7. A sample of neon gas at STP has a mass of 20. grams. An equal volume of argon gas at STP will have a mass of
A) $10 . \mathrm{g}$
B) $20 . \mathrm{g}$
C) 30 D)
40. g

## Moles-Liters Calculations

8. Which contains the same number of molecules as 22.4 liters of $\mathrm{N}_{2}$ at STP?
A) 20.0 grams of argon
B) 4.00 grams of helium
C) 10.0 grams of nitrogen
D) 8.00 grams of oxygen
9. Which quantity represents 1.00 mole at STP?
A) 22.4 liters of $\mathrm{O}_{2}(\mathrm{~g})$
B) 22.4 liters of $\mathrm{H}_{2} \mathrm{O}(\ell)$
C) 16.0 grams of $\mathrm{O}_{2}(\mathrm{~g})$
D) 16.0 grams of $\mathrm{H}_{2} \mathrm{O}(\ell)$
10. What is the total volume, in liters, occupied by 56.0 grams of nitrogen gas at STP?
A) $11($ B) 44.8 C) 33.6
D) 22.4
11. The mass of 11.2 liters of a gas is 20 . grams at STP. What is the mass of $6.02 \times 10^{23}$ molecules of this gas?
A) $80 . \mathrm{g}$
B) $20 . \mathrm{g} \underset{\mathrm{C}}{40 . \mathrm{g}}$
$10 . \mathrm{g}$
12. Which quantity of $\mathrm{N}_{2}$ gas has a volume of 11.2 liters at STP?
A) 1.0 mole
B) 2.0 moles
C) 14.0 grams
D) 28.0 grams
13. Which quantity contains a total of $3.01 \times 10^{23}$ molecules of $\mathrm{Cl}_{2}$ at STP?
A) 17.0 g
B) 70.0 g
C) $11.2 \ell$
D) $22.4 \ell$
14. At STP, which gas sample has a volume of 11.2 liters?
A) 0.250 mole of $\mathrm{NH}_{3}$
B) 0.750 mole of $\mathrm{NH}_{3}$
C) 0.500 mole of $\mathrm{CO}_{2}$
15. At STP, 170. grams of $\mathrm{NH}_{3}$ gas will occupy a total of
A) 2240 L
B) 22.4 L
C) 2.24 L
D) 224 L
16. At STP, 32 grams of $\mathrm{O}_{2}$ would occupy the same volume as
A) 64 g of $\mathrm{H}_{2}$
B) 32 g of $\mathrm{SO}_{2}$
C) 8.0 g of $\mathrm{CH}_{4}$
D) 4.0 g of He
17. What mass of carbon dioxide occupies a volume of 22.4 liters at STP?
A) 66.0 g
B) 88.0 g
C) 22.0 g
D) 44.0 g
18. The total quantity of molecules contained in 5.6 liters of an ideal gas at STP is
A) 1.0 mole
B) 0.75 mole
C) 0.50 mole
D) 0.25 mole
19. At STP, 1 mole of $\mathrm{He}(\mathrm{g})$ contains the same number of atoms as
A) 44.8 L of $\mathrm{H}_{2}(\mathrm{~g})$
B) 22.4 L of $\mathrm{H}_{2}(\mathrm{~g})$
C) 22.4 L of $\mathrm{Ar}(\mathrm{g})$
D) 44.8 L of $\mathrm{Ar}(\mathrm{g})$
20. Which quantity represents the total amount of $\mathrm{N}_{2}(\mathrm{~g})$ in a 22.4 liter sample at STP?
A) 1.00 mole
B) 14.0 grams
C) $3.01 \times 10^{23}$ molecules
D) $6.02 \times 10^{23}$ atoms
21. At STP, 44.8 liters of $\mathrm{CO}_{2}$ contains the same number of molecules as
A) 1.00 mole of He B) 2.00 moles of Ne
C) 0.500 mole of $\mathrm{H}_{2}$
D) 4.00 moles of $\mathrm{N}_{2}$
22. What is the total number of carbon atoms contained in 22.4 liters of CO gas at STP?
A) 1.00
B) 0.500
C) $3.01 \times 10^{23}$
D) $6.02 \times 10^{23}$

Determining Empirical Formulas based on Given mole ratios

1) $\mathrm{Cu}=1.15$ moles, $\mathrm{S}=1.15$ moles, $O=4.60$ moles

2) $\mathrm{Ag}=3.6$ moles, $P=1.2$ moles, $O=4.8$ moles

$$
\mathrm{Ag}_{3} \mathrm{PO}_{4}
$$

4) $\mathrm{Zn}=1.53$ moles, $\mathrm{Cl}=3.06$ moles

$$
\mathrm{ZnCl}_{2}
$$

5) $\mathrm{Si}=0.52$ moles, $\mathrm{F}=3.12$ moles

$$
\operatorname{siF}_{6}
$$

6) $C=3$ moles, $O=6$ moles

$$
\mathrm{CO}_{2}
$$

7) $\mathrm{H}=3.61$ moles, $\mathrm{O}=1.8$ moles

8) $\mathrm{Al}=1.2$ moles, $\mathrm{O}=3.6$ moles, $\mathrm{H}=3.6$ moles

$$
\mathrm{Al}(\mathrm{OH})_{3}
$$

9) $\mathrm{Na}=0.82$ moles, $\mathrm{Cl}=0.82$ moles

$$
N \sigma C(
$$

10) $\mathrm{Zn}=21.1$ moles, $\mathrm{N}=42.2$ moles, $\mathrm{O}=126.6$ moles

$$
2 n\left(N_{3}\right)_{2}
$$

## Empirical Formula from Percent Composition

$$
\text { 1) } \begin{array}{rlrl}
92.24 \% \mathrm{c}: 7.76 \% \mathrm{H} & & \text { molot } C=\frac{92.24}{12.0111}=\frac{7.68 \mathrm{~mol}}{7.68}=1 \\
92.24 \% \mathrm{C} & =92.24 \mathrm{gCC} & \mathrm{q} / \mathrm{l} \\
7.76 \% \mathrm{H} & =7.76 \mathrm{gtl} & \text { molottt }=\frac{7.76}{1.00794}=\frac{7.69 \mathrm{md} \mathrm{ratio}}{7.68}=1.002
\end{array}
$$

2) $36.48 \% \mathrm{Na} ; 25.44 \% \mathrm{~S} ; 38.08 \% \mathrm{O}$

3) $49.99 \% \mathrm{C} ; 5.61 \% \mathrm{H} ; 44.40 \% \mathrm{O}$

4) $38.76 \% \mathrm{Ca} ; 19.97 \% \mathrm{P} ; \mathbf{4 1 . 2 7 \%} \mathrm{O}$

5) A compound composed of 0.556 g carbon and 0.0933 g hydrogen.


## Molecular Formula from Empirical Formula and Percent Composition

1) Calculate the molecular formula for the following:
a.) empirical formula CH , molar mass $=78 \mathrm{~g} / \mathrm{mol}$

$$
\begin{aligned}
& \text { Emp: } \quad c t=13 g \\
& \text { Molecular } C_{6}{ }^{H} 6=78 \mathrm{~g}
\end{aligned}
$$

b.) empirical formula $\mathrm{NO}_{2}$, molar mass $=46.01 \mathrm{~g} / \mathrm{mol}$

$$
\bar{L} m p: N O_{\alpha}=46.01 g=m d r .
$$

c.) caffeine, $49.5 \%$ C, $5.15 \% \mathrm{H}, 28.9 \% \mathrm{~N}, 16.5 \% \mathrm{O}$ by mass, molar mass $=195 \mathrm{~g}$

$$
\begin{aligned}
& \text { Emp: } \mathrm{C}_{4} H_{5} \mathrm{~N}_{2} \mathrm{O}=97 g \\
& \text { Mdeculor: } \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}=195 \mathrm{~g}
\end{aligned}
$$

2) A compound analyzes as $79.08 \% \mathrm{C} ; 5.54 \% \mathrm{H}$ and $15.38 \% \mathrm{~N}$. What is the molecular formula if the molar mass is $273.36 \mathrm{~g} / \mathrm{mol}$ ?

$$
\begin{aligned}
& \text { Emp: } C_{6} H_{1} H_{1}=91 \mathrm{~g} \\
& \text { Molecula: } C_{18} H_{15} N_{3}=27336 \mathrm{~g}
\end{aligned}
$$

## Molecular Formula from Empirical Formula and Percent Composition

1. Freons are gaseous compounds that we used to use in air conditioners and refrigerators. Freon contains $9.93 \%$ carbon, $58.6 \%$ chlorine and $31.4 \%$ fluorine by mass. What is the empirical formula?

2. Find the empirical formula for a compound made of 0.295 g of $\mathrm{Ca}, 0.236 \mathrm{~g}$ of $S$, and 0.469 g of 0 .
3. The molecular mass of benzene is 78 amu and its empirical formula is CH . What is the molecular formula for benzene?

4. Vitamin C, formally known as ascorbic acid, contains $40.9 \%$ carbon, $4.58 \%$ hydrogen and $54.5 \%$ oxygen. It has a molecular mass of 176.1 amu . What is its molecular formula? (first, find its empirical formula).

5. Find the formula for a crystal hydrate containing $76.9 \% \mathrm{CaSO}_{4}, 19.9 \%$ water.

