
55

NGSS Regents Chemistry

PRACTICE PACKET

Unit 10: Electrochemistry (Redox)

Assigning Oxidation Numbers

Name_____

Assign oxidation numbers to all of the elements in each of the compounds or ions below.

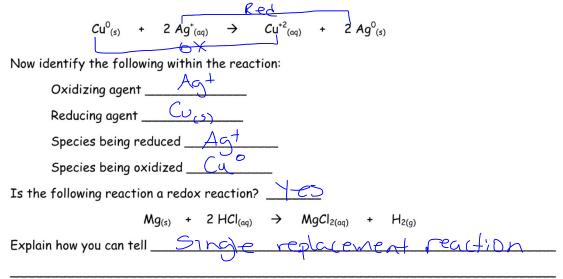
	is in each of the compounds of ions be
1. + \ -\ HCI	^{11.} $H_2 SO_3$
2. $\frac{11+5}{KNO_3}$ + 1.45 - $\zeta = 0$	12. +1 +6 -2 H ₂ SO ₄
3. OH- =-1 Table E	13. * M gO ₂
4. $\frac{12}{Mg_3N_2} = 0$	14. KMnO ₄
5. $41_{15}-2$ KClO ₃ $41_{15}-6 = D$	15. LiH
6. $+3+5-2$ Al(NO ₃) ₃ $+15$ +3+15-18=0	16. MnO ₂
7. S ₈	17. OF ₂
$H_2O_2^{8.}$	$\begin{array}{c} 18. \\ SO_3 \end{array}$
9. +4 -2 PbO ₂	19 3 + (NH ₃
10. NaHSO4	20. O Na

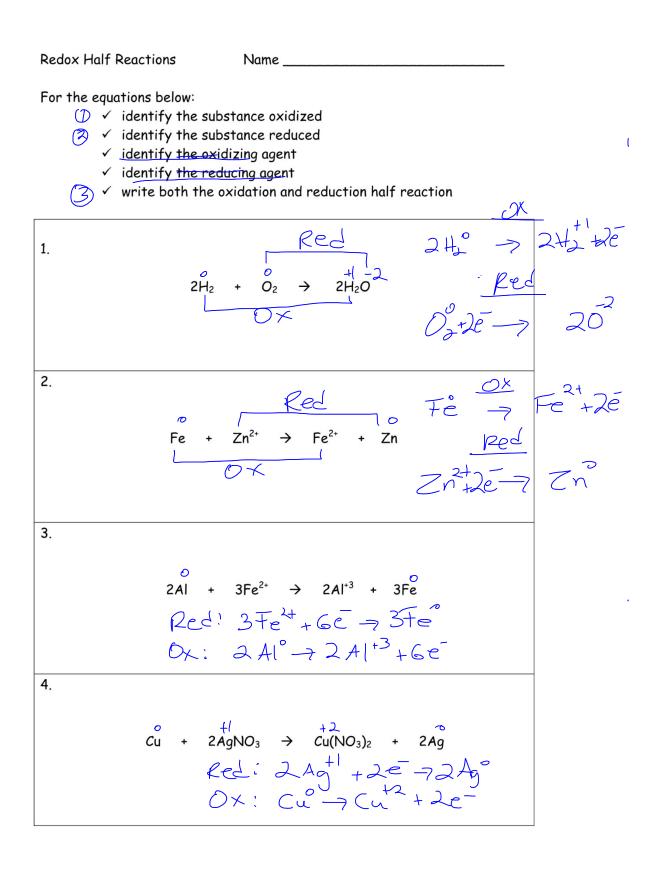
For each of the following: a) assign oxidation numbers for each element/species; b) indicate the element/species, if any, that are oxidized and reduced..

$1)\frac{1}{2n} + \frac{12}{Pb}(NO_3)_2 \rightarrow \frac{1}{Pb} + \frac{1}{2n}(NO_3)_2$	avidiand automatic Zn°
	oxidized substance
12442 12 2 0 41 2	
$2) \frac{12}{\text{Fe}(\text{CO}_3)} + \frac{12}{\text{CO}} \rightarrow \frac{9}{\text{Fe}} + 2\frac{11}{\text{CO}_2}$	oxidized substance
-2	reduced substance <u>Feta</u>
3) $3H_2 + N_2 \rightarrow NH_3$	evidized substance
$3) 3 \Pi_2 + \Pi_2 - 2 \Pi \Pi_3$	oxidized substance H_2° reduced substance H_2°
2 1 2 2 2 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	oxidized substance
	oxidized substance $\underline{<}^{\circ}$ reduced substance $\underline{H_{a}^{+1}}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
5) $A_{g}NO_{3} + FeCl_{3} \rightarrow A_{g}Cl + Fe(NO_{3})_{3}$	oxidized substance <u>Nothing</u>
	reduced substance <u>Nothing</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	avidized substance no love
$0) H_2 C O_3 \rightarrow H_2 O_7 C O_2$	oxidized substance <u>no-hing</u>
7) FeBr ₂ + Br ₂ \rightarrow FeBr ₃	oxidized substance <u>Fe⁺²</u> reduced substance <u>Bg</u>
	reduced substance <u>B</u> C
8) $MnO_2 + 4HCI \rightarrow MnCl_2 + Cl_2 + 2H_2O$	
8) $MnO_2 + 4HCI \rightarrow MnCl_2 + Cl_2 + 2H_2O$	oxidized substance $\underline{C} \ \underline{C} \ \underline{L}^{-2}$ reduced substance $\underline{M} \ \underline{L}^{+4}$
9) $MgSO_4$ + $Ca(OH)_2$ \rightarrow $Mg(OH)_2$ + $CaSO_4$	oxidized substance optimized
	reduced substance
+(-1)+2+1+(-2)+(-2)	
$10) H_2O_2 + PbS \rightarrow PbSO_4 + H_2O$	oxidized substance
	reduced substance
$11) \text{ KCl } + \text{ H}_2 \text{ SO}_4 \rightarrow \text{ KHSO}_4 + \text{ HCl}$	
11) KCI + $H_2SO_4 \rightarrow KHSO_4 + HCI$	oxidized substance <u>nothing</u>
	reduced substance <u>no thing</u>
$+ _{45}, 2, + _{$	oxidized substance anthirm
	reduced substance <u>nothing</u>
0 0 +(-1)	
$\begin{array}{ccc} 0 & 0 & +(-) \\ 13) 2Na & +Cl_2 \rightarrow 2NaCl \end{array}$	oxidized substance <u>Na</u> reduced substance <u>Cla</u>
	reduced substance <u>Cl2</u>

-

14) $C + H_2O \rightarrow CO + H_2$
$H_{2}^{+}(++) - 2 + (-) + + - 2$ 15) $H_{2}^{-}CO_{3} \rightarrow H_{2}^{-}O + CO_{2}^{-}$
16) $4Fe + 3O_2 \rightarrow 2Fe_2O_3$
17) $2H_2S^{+1} + 3O_2 \rightarrow 2SO_2^{+1} + 2H_2O^{+1}$
$\begin{array}{rcl} & & & & & \\ & & & & & \\ 18) \ \mbox{Fe} & + & \mbox{Pb}(NO_3)_2 \end{array} \rightarrow \begin{array}{rcl} & & & & & & \\ Pb & + & \mbox{Fe}(NO_3)_2 \end{array}$


oxidized substance \underline{C}° reduced substance \underline{H}^{+1}
oxidized substance <u>nothing</u> reduced substance <u>nothing</u>
oxidized substance $\underline{\neg e^{\circ}}$ reduced substance $\underline{\bigcirc_2^{\circ}}$
oxidized substance reduced substance
oxidized substance <u>Fe</u> reduced substance <u>Pb+></u>


State whether oxidation or reduction has occurred in the following half-reactions

19) $Mg^{+2} + 2e^- \rightarrow Mg^0$	K
20) $Al^0 \rightarrow Al^{*3} + 3e^{-1}$	0
21) $Cu^0 \rightarrow Cu^{+2} + 2e^{-1}$	0
22) Sn ⁰ → Sn ⁺² + 2e ⁻	D
23) $Cu^+ + e^- \rightarrow Cu^0$	R
24) Sn^{*4} + $2e^{-} \rightarrow \operatorname{Sn}^{*2}$	l
$25) Zn^0 \rightarrow Zn^{+2} + 2e^{-1}$	0
26) $5^{-2} \rightarrow 5^{0} + 2e^{-1}$	 O
	<u> </u>
$27) 20^{-2} \rightarrow O_2 + 4e^{-1}$	
28) Fe^{+3} + $e^{-} \rightarrow Fe^{+2}$	<u> </u>

Name	Redox Practice		
Fill in the appropriate number of electrons in each of the following reactions.			
	oxidation or reduction?		
1) Hg ⁺² + <u>2e</u> → Hg ⁰	R		
2) $Au^{\circ} \rightarrow Au^{+3} + \underline{3e}$	<u> </u>		
3) $F_2 + 2e^- \rightarrow 2F^-$	R		
4) $Zn^{+2} + \underline{2c} \rightarrow Zn^{0}$	R		
5) $Mn^0 \rightarrow Mn^{+2} + 2e^{-1}$	O		
6) $Cr^0 \rightarrow Cr^{+3} + \underline{3e}$	0		
7) $Ca^{+2} + 2C \rightarrow Ca^{0}$	R		
$8) K^{*} + \underline{le} \rightarrow K^{0}$	R		
9) Sn^{+2} + $2e^{-}$ \rightarrow Sn^{0}	R		
10) Ni ⁰ → Ni ⁺² + _2e	O		

For the following reaction determine what is oxidized and what is reduced. **Draw brackets** and label the brackets OXIDATION and REDUCTION.

Balancing Redox Equations

Balancing redox reactions can be very difficult using the balancing strategies we have learned thus far in class. Redox reactions are tricky because we must *balance* by *mass* and *charge*. This is according to the Law of Conservation of matter and charge. There are five steps that must be followed to balance a redox reaction.

Example: Balance the following reaction

 $Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO + H_2O$

Step 1: Write the oxidation numbers for each atom in the reaction

$$\begin{array}{cccccccc} & & & & & & \\ & & & & & & \\ Cu & + & HNO_3 & \rightarrow & Cu(NO_3)_2 & + & NO & + & H_2O \end{array}$$

Step 2: Identify the substance being oxidized and reduced.

Oxidized:
$$Cv^{\circ}$$

Reduced: N^{+5}

Step 3: Write the half reactions:

$$Cu^{t} \rightarrow Cu^{t} + 2e^{-t}$$

$$N^{t} + 3e^{-t} \rightarrow N^{t}^{2}$$

Step 4: Multiply each half reaction so the electron number is equal in both reactions.

$$3C_{n} \rightarrow 3C_{u}^{\dagger} + 6e^{-1}$$

 $2N^{\dagger} \rightarrow 6e^{-1} - 2N^{\dagger}$

Step 5: Add the two balanced half cell reactions together to write the overall redox reaction.

$$3 \operatorname{Cu}^{+} + 2 \operatorname{N}^{+} - 3 \operatorname{Gu}^{+} + 2 \operatorname{N}^{+} - 2 \operatorname{Gu}^{+} - 2 \operatorname{Gu}^{+} + 2 \operatorname{N}^{+} - 2 \operatorname{Gu}^{+} - 2 \operatorname{Gu}^{+} - 2 \operatorname{N}^{+} - 2 \operatorname{$$

Practice: Balance the following redox reactions using the five step procedure outlined above.

1.
$$CsF + Na \rightarrow NaF + Cs$$

 $Cs^{+1} + 1 = Cs^{+1} + 1 = Cs^{+1}$
 $Na^{\circ} \rightarrow NaF + Cs^{\circ}$
 $Na^{\circ} \rightarrow NaF^{+1} + 1e^{-1}$
 $Cs^{+1} + Na^{\circ} \rightarrow Cs^{\circ} + Na^{-1}$
2. $2NaCl + Br_{2} \rightarrow 2NaBr + Cl_{2}$
 $Br_{2}^{\circ} + 2e^{-1} \rightarrow 2Br^{-1}$
 $2Cl^{-1} \rightarrow Cl_{2}^{\circ} + 2e^{-1}$
 $Br_{2}^{\circ} + 2cl^{-1} \rightarrow 2Br + Cl_{2}^{\circ}$

3.
$$MgCl_{2} + Gr \rightarrow Mg + CrCl_{3}$$

$$Rel: (Mg^{+2} + 2e^{-3} - Mg^{-1} \times 3 \dots 3 Mg^{+2} + 6e^{-3} - 3 Mg^{-3}$$

$$OK: (Cr^{-7}(r^{2} + 3e^{-1}) \times 2 \dots 3 L(r^{0} - 2(r^{2} + 6e^{-3})) \times 2 \dots 3 L(r^{0} - 2(r^{2} + 6e^{-3})) \times 2 \dots 3 L(r^{0} - 3 Mg^{0} + 2(r^{2}))$$

$$4. Pb^{-1} + AgN0_{2} \rightarrow Pb(NO_{2})_{2} + Ag^{-1} + 2e^{-3} + 2e^{-3}$$

$$7b^{-3} Pb^{+2} + 2e^{-3} + 2e^{-3} + Cu$$

$$Cu^{+1} + 1e^{-3} - 2Ag^{-1} + Pb^{+2}$$

$$5. Fe^{i2} + Cu^{i} \rightarrow Fe^{i3} + Cu$$

$$Cu^{+1} + 1e^{-3} - Cu^{2}$$

$$Fe^{i2} - 7e^{i3} + 1e^{-7}$$

$$Cu^{+1} + Fe^{i3} + 1e^{-7}$$

$$Cu^{+1} + Fe^{i3} + Cu^{-3} + Cu^{-3}$$

$$3Cu^{+2} + 6e^{-3} - 3Cu^{-3}$$

$$2Cr^{0} + 3Cu^{+2} + 6e^{-7}$$

$$2Cr^{0} + 3Cu^{+2} - 7Cu^{0} + Cu$$

$$Cu^{+2} + 2e^{-7} - Cu^{-3} + Cu$$

$$Cu^{+2} + 2e^{-7} - Cu^{-3} + Cu^{-3}$$

$$2n^{-3} - 2n^{+4} + 2e^{-7}$$

$$2n^{+3} - 2n^{+4} + 2e^{-7}$$

$$2n^{+4} - 2n^{-3} - Cu^{-3} + Cu$$

$$3Cu^{+2} + 6e^{-3} - 3Cu^{-3}$$

$$2n^{-3} - 2n^{+4} + 2e^{-7}$$

$$2n^{-3} - 2n^{-4} + 2e^{-7}$$

$$2n^{-4} + 2e^{-7} + 2e^{-7$$

Reg	ren	ts (Ch	em	ist	trv
			~	~		- J

Activity Series (Table J)

1. Which ion is most easily reduced? 11. Under standard conditions, which metal will react with 0.1 M HCl to liberate hydrogen gas? A) Ca²⁺ B) Mg²⁺ (A) Mg B) Ag C) Cu D) Au C) Zn²⁺ D) Co²⁺ 12. Referring to Reference Table J, which reaction 2. Which element in Period 3 of the Periodic Table is will not occur under standard conditions? the strongest reducing agent? C) C1 (A) $Cu(s) + 2 HCl(aq) \rightarrow CuCl_2(aq) + H_2(g)$ A) Na B) S D) Al B) $Ba(s) + 2 HCl(aq) \rightarrow BaCl_2(aq) + H_2(g)$ 3. Which of the following elements is the poorest C) Mg(s) + 2 HCl(aq) \rightarrow MgCl₂(aq) + H₂(g) reducing agent? D) $Sn(s) + 2 HCl(aq) \rightarrow SnCl_2(ag) + H_2(g)$ A) Al B) Zn C) Ba (D) H₂ 13. According to the Activity Series, which metal 4. Which metal will spontaneously react with Zn2+ will react spontaneously with hydrochloric acid? (aq), but will not spontaneously react with Mg2+ A) Ag B) Cu (C) Ni D) Hg (aq)? 14. According to Reference Table J, which redox A) Ni(s) B) Ba(s) reaction occurs spontaneously? (C) Mn(s) D) Cu(s) 5. Which reaction occurs spontaneously? A) $2 \operatorname{Ag}(s) + 2 \operatorname{H}^+ \rightarrow 2 \operatorname{Ag} + \operatorname{H}_2(g)$ B) $2 \operatorname{Ag}(s) + 2 \operatorname{H}^+ \rightarrow 2 \operatorname{Ag}^{2+} + \operatorname{H}_2(g)$ (A) $Cl_2(g) + 2NaBr(aq) \rightarrow Br_2(\ell) + 2NaCl(aq)$ C) $Cu(s) + 2 H^+ \rightarrow Cu^{2+} + H_2(g)$ B) $I_2(s) + 2NaF(aq) \rightarrow F_2(g) + 2NaI(aq)$ (D) Mg(s) + 2 H⁺ \rightarrow Mg²⁺ + H₂(g) C) $I_2(s) + 2NaBr(aq) \rightarrow Br_2(\ell) + 2NaI(aq)$ D) $Cl_2(g) + 2NaF(aq) \rightarrow F_2(g) + 2NaCl(aq)$ 15. Based on Reference Table J, which of the following elements will replace Pb from Pb(NO3) 6. Which metal reacts spontaneously with a solution 2(aq)? containing zinc ions? A) Au(s) (B) Mg(s) B) nickel A) copper D) Cu(s) C) Ag(s) (D) magnesium C) silver 16. Due to it having a low activity, which element 7. According to Reference Table J, which of these can be found in nature in the free (uncombined) metals will react most readily with 1.0 M HCl to state? produce H₂(g)? A) Ba B) Al C) Ca (D) Au A) K B) Ca C) Zn D) Mg 17. According to Reference Table J, which reaction 8. Which metal can replace Cr in Cr2O3? will take place spontaneously? A) nickel B) copper A) $Au^{3+} + Al(s) \rightarrow Au(s) + Al^{3+}$ (C) aluminum D) lead B) $Fe^{2+} + Cu(s) \rightarrow Fe(s) + Cu^{2+}$ 9. According to Reference Table J, which of these C) $Ni^{2+} + Pb(s) \rightarrow Ni(s) + Pb^{2+}$ ions is most easily reduced? D) $Sr^{2+} + Sn(s) \rightarrow Sr(s) + Sn^{2+}$ A) Ca^{2+} B) Cu^{+} C) Ag^{+} D) Cr^{3+} 18. Based on Reference Table J, which molecule-ion 10. Based on Reference Table J, which metal will pair will react spontaneously at 298 K? react spontaneously with Al3+? A) Br₂ + Cl⁻ B) $F_2 + I^-$ (A) Ca(s) B) Cu(s) C) $I_2 + Br^-$ D) $Cl_2 + F^-$ C) Cr(s) D) Co(s)

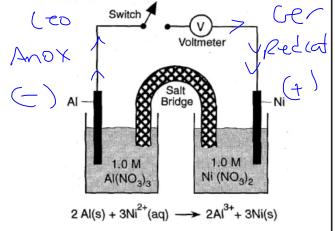
react spontaneously at 298K? A) $Cu + H_2O$ B) $Au + H_2O$ C) $Ca + H_2O$ D) $Ag + H_2O$ 20. Based on Reference Table J, which reaction will take place spontaneously? (A) $Ba(s) + 2 Na^+(aq) \rightarrow Ba^{2+}(aq) + 2 Na(s)$	 28. According to Reference Table J, which metal will react spontaneously with H⁺? A) Cr B) Au C) Cu D) Ag 29. Lead is a product of the reaction between a solution of lead (II) nitrate and A) Cu B) Fe C) Au D) Ag
C) $Ca + H_2O$ D) $Ag + H_2O$ 20. Based on Reference Table J, which reaction will take place spontaneously? (A) $Ba(s) + 2 Na^+(aq) \rightarrow Ba^{2+}(aq) + 2 Na(s)$	 29. Lead is a product of the reaction between a solution of lead (II) nitrate and A) Cu (B) Fe (C) Au (D) Ag
 C) Pb + Co²⁺ D) Ni + Al³⁺ 22. According to Reference Table J, which species is the strongest oxidizing agent? 	 30. Based on Reference Table J, which oxidation is most likely to occur? A) Au → Au³⁺ + 3e⁻ B) Ag → Ag¹⁺ + 1e⁻ C) Mg → Mg²⁺ + 2e⁻ D) Cu → Cu²⁺ + 2e⁻ 31. According to Reference Table J, which ion will oxidize Fe? A) Ca²⁺ B) Mg²⁺ C) Zn²⁺ C) Zn²⁺ D) Cu²⁺ Based on Reference Table J, which of the following characteristic theoretic in the period for the following characteristic and the second se
 23. Based on Reference Table J, which metal will not react with 1 M HCl? A) Zn(s) B) Au(s) C) Ni(s) D) Sn(s) 24. Based on Reference Table J, which of the following ions in aqueous solution is most easily oxidized? A) Br⁻ B) I⁻ C) F⁻ D) Cl⁻ 25. According to Reference Table J, which species can reduce Cr³⁺ ions? A) Al B) Fe²⁺ C) Ni D) Sn²⁺ 26. According to reference Table J, which reaction will occur spontaneously? A) Ag⁺ + Cu(s) → Ag(s) + Cu⁺ B) Fe²⁺ + Hg(e) → Fe(s) + Hg²⁺ 	following elements is the most actively oxidized? (A) Sr B) Cr C) Fe D) Cu 33. The half-reaction $2 H^+(aq) + 2e^- \rightarrow H_2(g)$ will occur when H ⁺ (aq) reacts with A) Hg(ℓ) B) Ag(s) C) Cu(s) D) Pb(s) 34. Based on Reference Table J, which reaction will take place spontaneously? A) 2 Au + 6 H ⁺ \rightarrow 2 Au ³⁺ + 3 H ₂ B) Cu + 2 H ⁺ \rightarrow Cu ²⁺ + H ₂ C) Pb + 2 H ⁺ \rightarrow Pb ²⁺ + H ₂ D) 2 Ag + 2 H ⁺ \rightarrow 2 Ag ⁺ + H ₂ 35. According to Reference Table J, which halogen will react spontaneously with Au(s) to produce Au ³⁺ ? (A) F ₂ B) I ₂ C) Cl ₂ D) Br ₂

Activity Series (Table J)

Spontaneous reactions (Table J)

Table J in your reference tables is arranged with the most reactive metals at the top of the table and the least reactive metals at the bottom of the table. What this means is that a metal listed on the table will react with the compound of a metal that is below it. For example, Zn is above Cu on the table. This means that Zn will replace Cu in a compound containing. Zn will be oxidized by a compound containing Cu. The Cu⁺ ion will be reduced by elemental Zn⁰.

The reaction: $Zn + Cu(NO_3)_2 \rightarrow Cu + Zn(NO_3)_2$ will spontaneously occur. The reverse reaction: $Cu + Zn(NO_3)_2 \rightarrow Zn + Cu(NO_3)_2$ will not spontaneously occur.


Please determine if a spontaneous reaction will occur. If one will occur, write the oxidation and reduction $\frac{1}{2}$ reactions.

- 1. $Zn + Pb(NO_3)_2 \rightarrow Pb + Zn(NO_3)_2$
 - a. Is the reaction spontaneous? 1/2>
 b. If yes, write the oxidation ½ reaction: 2 -7 -7 +7
 - c. If yes, write the reduction $\frac{1}{2}$ reaction : $\frac{1}{2}$
- 2. $3Zn + 2Al(NO_3)_3 \rightarrow 2Al + 3Zn(NO_3)_2$
 - a. Is the reaction spontaneous? $\underbrace{\begin{subarray}{c} \begin{subarray}{c} \begin{sub$
 - b. If yes, write the oxidation $\frac{1}{2}$ reaction:
 - c. If yes, write the reduction $\frac{1}{2}$ reaction :
- 3. $Ni + 2AgNO_3 \rightarrow 2Ag + Ni(NO_3)_2$
 - a. Is the reaction spontaneous? $N_{\mathcal{O}}$
 - b. If yes, write the oxidation $\frac{1}{2}$ reaction:
 - c. If yes, write the reduction ¹/₂ reaction : _____
- 4. $Ca+2AgNO_3 \rightarrow Ca(NO_3)_2 + 2Ag$
 - a. Is the reaction spontaneous? $2 e^{5}$
 - b. If yes, write the oxidation $\frac{1}{2}$ reaction: $\frac{1}{12} + \frac{1}{12} + \frac{2}{12} = \frac{1}{12}$
 - c. If yes, write the reduction $\frac{1}{2}$ reaction : $2Ae_{+}^{+}+2e_{-}^{-}-72Ae_{+}^{+}$
- 5. $Fe + CuCl_2 \rightarrow Cu + FeCl_2$
 - a. Is the reaction spontaneous?
 - b. If yes, write the oxidation $\frac{1}{2}$ reaction: $\frac{1}{12} + \frac{1}{2}$
 - c. If yes, write the reduction $\frac{1}{2}$ reaction : $(1 + 2e^{-3})$

Regents Chemistry

Redox: Galvanic/Voltaic Cells

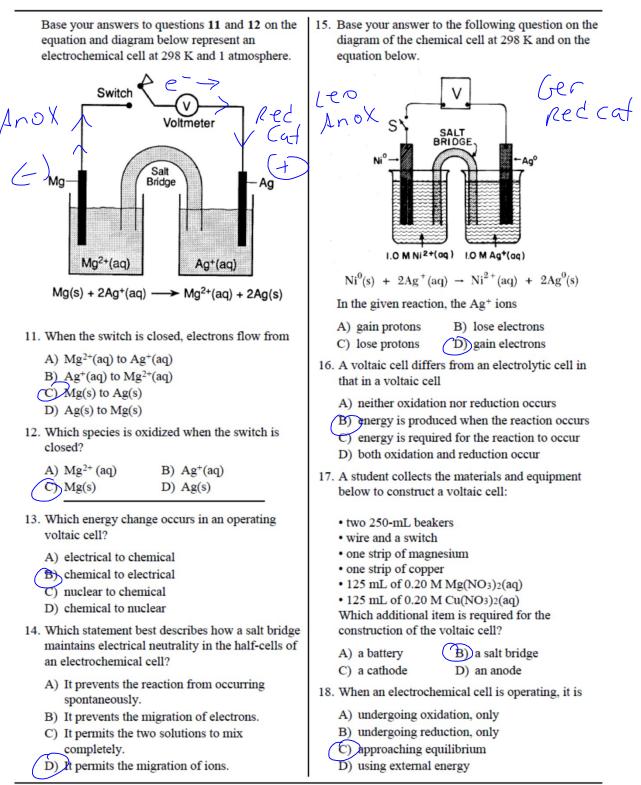
- Which component of an electrochemical cell is correctly paired with its function?
 - A) salt bridge allows the solutions to mix
 - B) external conductor permits the migration of ions
 - C) external conductor allows the solutions to mix
- D) salt bridge permits the migration of ions
- 2. Discharging a battery involves the process of
- A) redox reactions that produce electricity
- B) hydrolysis reactions that produce energy
- C) hydrolysis reactions that require energy
- D) redox reactions that require electricity
- The diagram below represents a chemical cell at 298 K.

When the switch is closed, electrons flow from

A) Al(s) to Ni(s)
B) Ni(s) to Al(s)
C) Ni²⁺(aq) to Al³⁺(aq)
D) Al³⁺(aq) to Ni²⁺(aq)

4. Reduction occurs at the cathode in

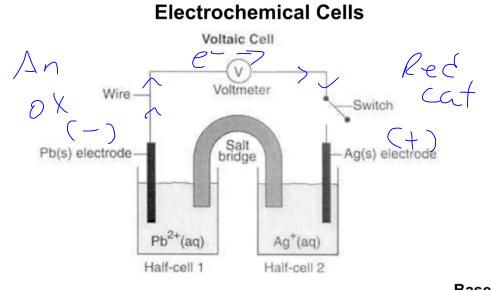
- A) electrolytic cells, only
- (B) both electrolytic cells and voltaic cells
- C) neither electrolytic cells nor voltaic cells
- D) voltaic cells, only


5. A standard zinc half-cell is connected to a standard copper half cell by means of a wire and a salt bridge. Which electronic equation represents the oxidation reaction that takes place?

(A)
$$Zn^0 - 2e^- \rightarrow Zn^{2+}$$

B) $Zn^{2+} + 2e^- \rightarrow Zn^0$
C) $Cu^0 - 2e^- \rightarrow Cu^{2+}$
D) $Cu^{2+} + 2e^- \rightarrow Cu^0$

- 6. A battery consists of which type of cells?
 - A) electroplating B) electrolytic
 - C) electromagnetic D) electrochemical
- 7. The redox reaction in a battery during discharge can best be described as
 - A) non-spontaneous and occurring in an electrolytic cell
 - B) non-spontaneous and occurring in a chemical cell
 - C) spontaneous and occurring in a chemical cell
 - D) spontaneous and occurring in an electrolytic cell
- 8. The type of reaction in an electrochemical cell is best described as a
 - A) non-spontaneous oxidation reaction, only
 - B) spontaneous oxidation reaction, only
- C spontaneous oxidation-reduction reaction D) non-spontaneous oxidation-reduction reaction
- 9. Which substance functions as the electrolyte in an automobile battery?


A) PbO ₂	B) H ₂ O
C) PbSO ₄	D H ₂ SO ₄

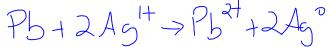
- 10. What is the voltage for a chemical cell that has reached equilibrium?
 - A) 1.00 V
 - B) greater than 1.00 V
 - C) greater than 0.00 V and less than 1.00 V D) 0.00 V

Redox: Galvanic/Voltaic Cells

13

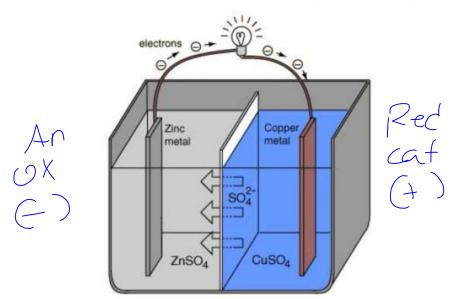
on Figure 1:

Based


1. Write the oxidation half-reaction for this cell.

2. Write the reduction half reaction for this cell.

3. Write the balanced equation that can be derived from the half-reactions.



4. If 1 mole of Ag reacts, how many moles of electrons will be transferred?

- 5. Of the substances Ag, Ag⁺, Pb, Pb²⁺, which are used up as the cell is used? \mathcal{H}° , \mathcal{A}_{q}^{+}
- 6. Which of the substances referred to in question 5 increases in mass as the cell is used?

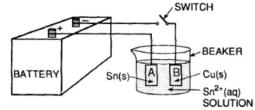
Electrochemical Cells (continued)

Based on Figure 2:

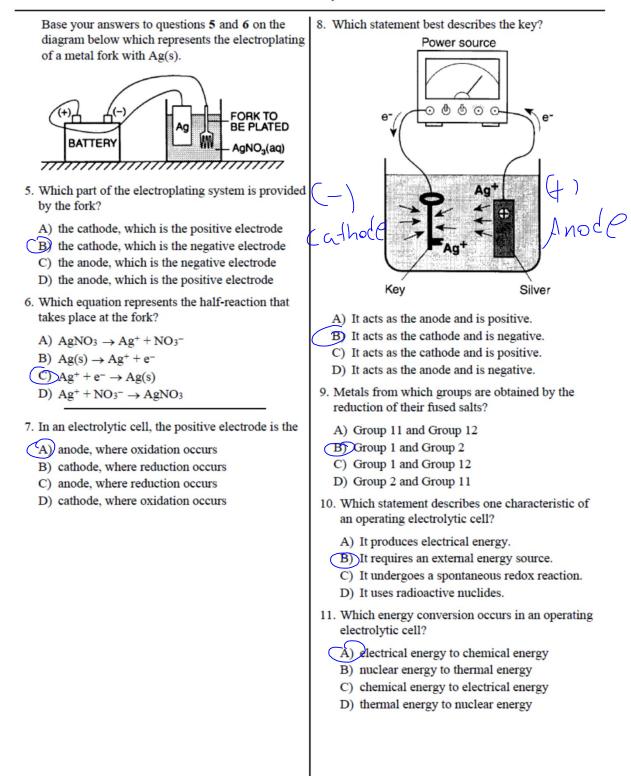
7. Write the half-reaction at the copper electrode.

8. Write the half-reaction at the zinc electrode.

9. If 2 moles of Zn react, how many moles of electrons are transferred?


1	1	~ ~
1	mol	φ
	$W \setminus U$	
· · · · ·		<u> </u>

Regents Chemistry


Redox: Electrolytic Cells

1. The diagram below shows a spoon that will be electroplated with nickel metal. fī Battery BATTERY Ni(s Anode thod Spoon Ni2+ (ag) What will occur when switch S is closed? A) The spoon will lose mass, and the Ni(s) will be reduced. B) The spoon will gain mass, and the Ni(s) will with tin. be oxidized. C) The spoon will gain mass, and the Ni(s) will the be reduced. D) The spoon will lose mass, and the Ni(s) will be oxidized. 2. A metal object is to be electroplated with silver. Which set of electrodes should be used? (A) a silver anode and a metal object as the cathode B) a silver cathode and a metal object as the anode C) a platinum anode and a metal object as the cathode D) a platinum cathode and a metal object as the anode

Base your answers to questions 3 and 4 on the diagram below of an electrolytic cell in which the electrodes are tin and copper.

- 3. When the switch is closed, what will happen to the two electrodes?
 - A) A will dissolve and B will become coated with copper.
 - B) B will dissolve and A will become coated with copper.
 - C) A will dissolve and B will become coated with tin.
 - D) B will dissolve and A will become coated
- 4. In this electrolytic cell, electrode A is designated as
 - A) anode and is negative
 - (B) anode and is positive
 - C) cathode and is positive
 - D) cathode and is negative

Redox: Electrolytic Cells

17