UNIT 5:
 MOLES \& STOICHIOMETRY

VOCABULARY:

1. Mole
2. Formula mass (FM)
3. Gram formula mass (GFM)
4. Coefficient
5. Subscript
6. Species
7. Law of conservation of mass
8. Law of conservation of energy
9. Balanced equation
10. Synthesis reaction
11. Decomposition reaction
12. Single-replacement reaction
13. Double-replacement reaction
14. Molecular formula
15. Empirical formula
16. Percent mass

INTRODUCTION:

Before we can even begin to understand what this unit is about, we need to be able to find the mass of different compounds. Open your Periodic Table and weill get started...

- First, what are the units we use for the mass atoms?

ATOMIC MASS UNITS $(\mathrm{amu})$$\rightarrow \frac{1}{12}$ of the mas S

$$
15.9994 \mathrm{amu}
$$

- Why don't we use grams as the units for massing atoms? Atoms are too SMALL—the number would be VERY BULKY

Ex: If we used grams to mass atoms, the mass of oxygen would be 0.00000000000000000000027 g or $2.7 \times 10^{-23} \mathrm{~g}$

Find the mass of the following atoms.

1) $M g=24.305 \mathrm{amv}$
2) $\mathrm{Li}=6.941 \mathrm{amu}$
3) $\mathrm{Cl}=35,453 \mathrm{amv}$
4) $\mathrm{Al}=26.98151 \mathrm{amv}$
5) $C a=40.08 \mathrm{amu}$
6) $\mathrm{H}=1.00794 \mathrm{amv}$

- MONOATOMIC ELEMENTS = one atom of an element that's stable enough to stand on its own (VERY RARE)-not bonded to anything
- DIATOMIC ELEMENTS or DIATOMS = elements whose atoms always travel in pairs $\left(\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}, A t_{2}, \mathrm{H}_{2}\right)$-bonded to another atom of the same element

So, what would the mass be of one molecule of oxygen $\left(\mathrm{O}_{2}\right)$?

This means that the mass of $\mathrm{O}_{2}=2 \times 15.994 \mathrm{amu}=31.9988 \mathrm{amu}$

Calculating Formula Mass \& Gram Formula Mass of Compounds:

- FORMULA MASS: the mass of an atom, molecule or compound in ATOMIC MASS UNITS (amu)

Ex: formula mass of a hydrogen atom is 1.00794 amv

- GRAM FORMULA MASS: the mass of one MOLE of an atom, molecule or compound in GRAMS (g)

Ex: GFM of hydrogen is \qquad 1.00794 g

Avogadro's

- MOLE: 6.02×10^{23} units of a substance (like a really big dozen)

Ex:1 mol of $C=\frac{6.02 \times 10^{23}}{\text { Quantity }}$ atoms of $C=\frac{12.011}{\text { MaSS }}$ g of C
Practice - SHOW ALL WORK!
\rightarrow mass of 1 molecule (amu)

1) What is the formula mass of $\mathrm{K}_{2} \mathrm{CO}_{3}$?

$$
\begin{aligned}
& K=2 \times 39.0983=78.1966 \\
& C=1 \times 12.011=12.0111 \\
& O=3 \times 15.9994=\frac{47.9982}{138.2059 \mathrm{amu}}
\end{aligned}
$$

2) What is the gram formula mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$?

$$
\begin{aligned}
& C_{u}=1 \times 63.546=63.546 \\
& S=1 \times 32.06=32.06 \\
& 0=4 \times 15.9994=63.9976 \\
& H=10 \times 1.00794=10.0794 \\
& 0=5 \times 15.994=\frac{79.997 t}{249.689}
\end{aligned}
$$

Calculating Percent Composition
Step 1: Calculate the GFM for the compound (or the FM). $\mathrm{Ex}: \mathrm{CaCl}_{2}$

Step 2: Check the last page of your periodic table for the formula for percent composition. Write the formula below:
ea

$$
\% \text { composition by mass }=\frac{\text { mass of part }}{\text { mass of whole }} \times 100
$$

Now, use the formula to find the percent composition of each element or "part" in our compound (to the nearest 0.1%).

$$
\begin{aligned}
& \text { Compound (to the nearest } 0.1 \%) .\left(\frac{40.08}{110.986}\right) \times 100=36.1 \% \mathrm{Ca} \\
& \mathrm{Ci}:\left(\frac{70.906}{110.986}\right) \times 100=63.9 \% \mathrm{Cl}
\end{aligned}
$$

Practice:

1) What is the percentage by mass of carbon in CO_{2} ?

$$
\begin{aligned}
& C=1 \times 12.011=\frac{12.011}{41.9988 t} \\
& O=2 \times 15.9994=\frac{34}{41.0098}
\end{aligned}
$$

2) What is the percent by mass of nitrogen in $\mathrm{NH}_{4} \mathrm{NO}_{3}$?

$$
\begin{aligned}
N=2 \times 14.0067=28.0134 & \text { part } \%(\text { mp }
\end{aligned}=\frac{28.0134}{80.04336} \times 100
$$

3) What is the percent by mass of oxygen magnesium oxide?

A Special Type of Percent Composition: CRYSTAL HYDRATES

A HYDRATE is a CRYSTALLINE compound in which ions are attached to one or more WATER molecules

Example: $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

- Notice how WATER molecules are BUILT INTO the chemical formula
- Substances without water built into the formula are called ANHYDRATES

Problem: What is the percentage by mass of water in sodium carbonate crystals $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$?

$$
2 \times(1.00794)
$$

Step 1: Calculate the formula mass for the hydrate. $\frac{t^{1 \times(15.9994)}}{18.01528}$

Step 2: Check the last page of your periodic table for the formula for percent composition. Write the formula below:
$\%$ composition by mass $=\underline{\text { mass of part }} \times 100$ mass of whole
$\% \mathrm{H}_{2} \mathrm{O}$ by mass $=\frac{180.1528}{286.1416} \times 100=63.0 \%$

Practice:

1) What is the percent by mass of water in $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$?

$$
\begin{array}{lr}
B_{a}=\frac{137.33}{208.236} & \frac{36.03056}{244.26656} \times 100 \\
\mathrm{H}_{2} \mathrm{O}=\frac{2 \times(35.453)}{36.03056} & =14.8 \%
\end{array}
$$

2) Which species contains the greatest percent by mass of oxygen?
a) CO_{2}
b) $\mathrm{H}_{2} \mathrm{O}$
c) NO_{2}
d) MgO

Application of the Mole: The Math of Chemistry

We will need to convert from grams to moles and vice versa for this class. The diagram below summarizes these processes:

Converting from Grams to Moles:

From Table T, you would use the Mole Calculations Formula:

$$
\begin{aligned}
& G F M \times \# \text { of moles }=\frac{\text { given mass }(9)}{G F M(G F)} \times G M \\
& \text { given mass }=G F M \times \# \text { of modes }
\end{aligned}
$$

Given

Problem: How many moles are in 4.75 g of sodium hydroxide? (NaOH)
Step 1: Calculate the GFM for the compound.

$$
\begin{aligned}
& \mathrm{Na}=1 \times 22.98977 \\
& O=1 \times 15.9994 \\
& H=1 \times \quad 1.00794 \\
& \quad \frac{39.99711 \mathrm{~g} / \mathrm{mol}}{}
\end{aligned}
$$

Step 2: Plug the given value and the GFM into the "mole calculations" formula and solve for the number of moles.

$$
\# \text { of moles }=\frac{\text { given mass }(\mathrm{g})}{\text { GFM }(\mathrm{g} / \mathrm{mol})}=\frac{4.75}{39.99711}=0.119 \mathrm{~mol}
$$

Practice:

1) How many moles are in 39.0 grams of LiP?

$$
\begin{aligned}
& \text { GEM } \\
& L_{i} 1 \times 6.941 \\
& \bar{F} \quad \frac{18.9984 t}{25.93949} / \mathrm{mol}
\end{aligned}
$$

$$
\text { \# of moles }=\frac{39.0}{25.9394}=\begin{gathered}
1.504 \mathrm{~mol} \\
\text { of Li }
\end{gathered}
$$

2) What is the number of moles of potassium chloride present in 148 g ?

$$
\begin{array}{ll}
\frac{G F M}{1 \times 39.0983} & K C 1 \\
C 11 \times \frac{35.453+}{74.55139} 1 \mathrm{~mol} & \begin{array}{l}
\text { Oofmol } \\
K C l
\end{array}
\end{array}=\frac{148}{74.5513} \begin{aligned}
& 1.98 \mathrm{~mol} \\
& 0+K C 1
\end{aligned}
$$

3) How many moles are in 168 g of KOH ?

GEM
$56 \cdot 10564$

Converting from Moles to Grams:

From Table T, you would still use the Mole Calculations Formula, but you must rearrange it since you are solving for GRAMS now:

$$
\text { mass of sample }(g)=\# \text { of moles }(\mathrm{mol}) \times G F M(\mathrm{~g} / \mathrm{mol})
$$

Problem: You have a 2.50 mole sample of sulfuric acid. What is the mass of your sample in grams? $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$

Step 1: Calculate the GFM for the compound.

$$
\begin{array}{rlrl}
G \pm M & M a s s & =1 \text { nola } \times G F M \\
H 2 \times 1.00794=2.01588 & & =2.5 \times 98.07348 \\
S 1 \times 32.06 & & =98.07348 \mathrm{~g} \\
04 \times 15.9994 & =\frac{63.9976 t}{98.073489} / \mathrm{mol} & &
\end{array}
$$

Step 2: Plug the given value and the GFM into the "mole calculations" formula and solve for the mass of the sample.

$$
\text { mass of sample }(\mathrm{g})=\# \text { of moles }(\mathrm{mol}) \times G F M(\mathrm{~g} / \mathrm{mol})
$$

Practice: X Given

1) What is the mass of 4.5 moles of KOH ?

$$
\begin{aligned}
& \text { 1) What is the mass of } 4.5 \text { moles of } \underline{\mathrm{KOH} \text { ? }} \\
& K 1 \times 39.0983 \\
& K 1 \times 15.0994 \\
& 01 \times \frac{m a s s}{56.1056}
\end{aligned} \quad=4.5 \mathrm{md} \times 56.1056 \mathrm{~g} / \mathrm{mol}
$$

2) What is the mass of 0.50 mol of CuSO_{4} ?

$$
\frac{G F M}{159.60869 / \mathrm{mol}}
$$

$$
\begin{aligned}
\text { mass of } & =0.50 \mathrm{mot} \times 159.6086 \mathrm{~s} / \mathrm{mat} \\
& =79.8043 \mathrm{~g} \mathrm{c.504}
\end{aligned}
$$

3) What is the mass of 1.50 mole of nitrogen gas?

$$
\begin{aligned}
\frac{G F \mu}{28.0134} \quad \text { mass } & =1.50 \mathrm{mot} \times 28.0134 \mathrm{~g} / \mathrm{mol} \\
& =42.0 \mathrm{~g} N_{\alpha}
\end{aligned}
$$

CHALLENGE: Convert from grams to atoms/molecules or vice versa.
4) How many molecules of SO_{2} are there in a 1.75 g sample?
\qquad
(1) First convert

$$
\begin{aligned}
& \text { (1) } \frac{\text { GaM }}{15=32.065} \\
& \begin{array}{l}
15=2(15.9994)-1 \\
20=1.0685)
\end{array} \\
& \text { (TableT) } 64.06385 / \mathrm{mol} \\
& \text { mes }=\frac{\text { givenmas) }}{g+\mathrm{m}}=\frac{1.75}{64.06385}=0.2731 \mathrm{~mol} \\
& \text { molecules }=\text { moles } \times 6.02 \times 10^{23} \\
& \text { mass to moles } \\
& \text { (2) Then convert } \\
& \text { moles to } \\
& =1.64 \times 10^{22} \text { molectee } \\
& \begin{array}{l}
\text { Anoguco molecules } \\
\text { bimbo }
\end{array}
\end{aligned}
$$

5) What is the mass of 3.01×10^{23} atoms of carbon?
(Tactor-label method)

3.01×10^{23} atansc $\left\lvert\, \frac{1 \text { mot } \mathrm{C}}{6.02 \times 10^{33} \text { atoms }} 11\right.$ mote $=$| 12.011 gC |
| :--- |
| 6.01 gC |

Chemical Equations:

- A CHEMICAL EQUATION is a set symbols that state the PRODUCTS and REACTANTS in a chemical reaction.

REACTANTS $=$ the starting substances in a chemical reaction (found to the LEFT of the arrow)

PRODUCTS = a substance produced by a chemical reaction (found to the RIGHT of the arrow)

Example:

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}
$$

- Chemical equations must be BALANCED. Think of the arrow (\rightarrow) as an equal sign.
- LAW of CONSERVATION of MASS: mass can neither be CREATED nor DESTROYED in a chemical reaction

Balancing Equations:

The number of MOLES of each ELEMENT on the REACTANTS (left) side of the equation must be the same as the number of MOLES of each ELEMENT on the PRODUCTS (right) side of the equation.
*COEFFICIENTS and SUBSCRIPTS tell us how many moles we have for each element

Let's look at the BALANCED equation below:

$$
1 \mathrm{C}+1 \mathrm{O}_{2} \rightarrow 1 \mathrm{CO}_{2}
$$

*Note that there is 1 mol of carbon and 2 mol of oxygen on each side of the arrow. That's what it means to be BALANCED.

$$
\begin{aligned}
& 1 \mathrm{molc}=1 \mathrm{molc} \\
& 2 \mathrm{molo}=13 \mathrm{molo}
\end{aligned}
$$

Click here to watch vodcast: https://www.youtube.com/watch?v=YXTMfwEZAyU
Now, let's examine the following UNBALANCED equation:

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

Q : How does this unbalanced equation violate the Law of Conservation of Mass?
A: In this equation, oxygen would have to be DESTROYED (there's one less on the products side)

- COEFFICIENT = the integer in front of an element or compound which indicates the number of moles present
- SUBSCRIPT = the integer to the lower right of an element which indicates the number of atoms present
- SPECIES = the individual reactants and products in a chemical reaction.
Q : What do we use to balance equations?
A: COEFFICIENTS

NOTE: WE NEVER CHANGE THE SUBSCRIPTS IN A FORMULA!

Example:

$$
2 \mathrm{Ag}+\mathrm{S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}
$$

COEFFICIENTS:
$A g=2$
$S=1$
$A g_{2} S=1$

SUBSCRIPTS:
$A g=1$
$S=1$
$\mathrm{Ag}_{2} \mathrm{~S}:$

$$
A g=2
$$

$$
S=1
$$

Method for Balancing Equations:
Step 1: Draw a line to separate products from reactants
Step 2: List each of the different elements on each side of the line
Step 3: Count up the number of atoms on each side \& record next to the element symbol
Step 4: Find the most complex compound in the equation. Balance the elements found in that compound on the opposite side of the arrow by changing the coefficients for the different species. Every time you change a coefficient, you must update the number of each element.
Step 5: Now, continue balancing the elements by changing coefficients until you have the same number of each element on both sides of the equation.

Example: $6 \mathrm{CO}_{2}+\underset{\mathrm{C}}{\mathrm{H} O \mathrm{O} \rightarrow+1} \mathrm{c}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$

C $\times 6$
031318
H212
c 6
0818
H 12

ONE LAST NOTE:

When balancing chemical equations, POLYATOMIC IONS may be balanced as a SINGLE ELEMENT rather than as separate elements as long as they stay intact during the reaction.

Example: $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Ca}\left(\underline{(\mathrm{OH})_{2}} \rightarrow \mathrm{Al}(\underline{\mathrm{OH}})_{3}+\mathrm{CaSO}_{4}\right.$
In this equation, we have the polyatomic ions SULFATE \& HYDROXIDE, and both remain intact during the reaction. Since SO_{4} has the subscript of 3 , we could think of it as $3 \times 1=3$ sulfur atoms and $3 \times 4=12$ oxygen atoms. OR, we can just look at the UNIT and say there are $3\left(\mathrm{SO}_{4}\right)$'s on the reactant side and $1\left(\mathrm{SO}_{4}\right)$ on the product side.

Now let's balance the equation:

TYPES OF CHEMICAL REACTIONS:

*5. Combustion EX: ${ }^{2} \mathrm{CH} 4+2 \mathrm{O}$ and Ex: ${ }^{\mathrm{CH}} \mathrm{H}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+$ Heat

Mole-Mole Problems: An Introduction

A chemical equation is basically the "recipe" for a reaction. The COEFFICIENTS in an equation tell us the amounts of REACTANTS and PRODUCTS we need to make the recipe work. Reactants in an equation react in specific RATIOS to produce a specific amount of products. Below is a recipe for sugar cookies:

$$
3 \text { eggs }+1 \text { cup of flour }+2 \text { cups sugar } \rightarrow 24 \text { cookies }
$$

Let's simplify this to: $3 E+1 F+2 S \rightarrow 24 C$

If we massed the eggs, flour and sugar, they should (in a perfect world) equal the mass of the cookies. (This illustrates the LAW OF CONSERVATION OF MASS)

$$
\begin{gathered}
3 E+1 F+2 S=24 C \\
(200 g+160 g+240 g=600 g)
\end{gathered}
$$

Q: If you had to bake 48 cookies, how many eggs would you need?
A: 6 (double it)

- Method for solving mole-mole problems: set up a proportion using your known and unknown values, then cross-multiply and solve for your unknown.

Ex 1: Set up the proportion from the $Q \& A$ above and solve.

$$
\begin{gathered}
\frac{x}{3 E}+1 F+25 \rightarrow \frac{48}{24 C} \\
\frac{x}{3}=\frac{48}{24} \\
\frac{24 x}{24}=\frac{142}{24}=6 \operatorname{egg}
\end{gathered}
$$

Ex 2: If you have 10 eggs and an infinite amount of sugar and flour, what is the greatest number of cookies you can make?

$$
\begin{aligned}
& \frac{10}{3 E}+1 F+25 \rightarrow \frac{x}{24} C \\
& \frac{10}{3}=\frac{x}{24} \frac{3 x}{3}=\frac{240}{3} \\
& x=80 \text { cookies }
\end{aligned}
$$

*We can use the process we used with the cookie recipe and apply it to chemical equations. The only difference is we ALWAYS check to make sure we are starting with a BALANCED CHEMICAL EQUA TION

Ex 3: Consider the following formula:0

$$
\widehat{\mathrm{N}_{2}}+3 \mathrm{H}_{2} \rightarrow \overline{2 \mathrm{NH}_{3}}
$$

How many moles of nitrogen gas $\left(\mathrm{N}_{2}\right)$ would be needed to produce 10 moles of ammonia $\left(\mathrm{NH}_{3}\right)$?

$$
\begin{array}{ll}
\frac{x}{1}=\frac{10}{2} \quad 2 x=10 \\
x=5 \mathrm{moln}
\end{array}
$$

Mole-Mole Practice
Use the following equation to answer questions 1-3:

$$
\mathrm{C}_{3} \mathrm{H}_{8}+\frac{x}{5 \mathrm{O}_{2}} \rightarrow \frac{2 \mathrm{O}}{3 \mathrm{CO}_{2}}+4 \mathrm{H}_{2} \mathrm{O}
$$

1) If 12 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ react completely, how many moles of $\mathrm{H}_{2} \mathrm{O}$ are formed?

$$
\begin{aligned}
\frac{12}{1}=\frac{x}{4} \quad x & =12 \times 4 \\
& =48{\mathrm{~mol} \text { of } \mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

2) If 20 moles of CO_{2} are formed, how many moles of O_{2} reacted?

$$
\frac{20}{3}=\frac{x}{5} \quad \frac{\beta x}{5}=\frac{100}{3}=33.3 \mathrm{~mol} 0_{2}
$$

3) If 8 moles of O_{2} react completely, how many moles of $\mathrm{H}_{2} \mathrm{O}$ are formed?

$$
\frac{8}{5}=\frac{x}{4}
$$

$\frac{5 \times}{5}=\frac{32}{5}=6.4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{y}$
Use the following equation to answer questions 4-7:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

4) If 2.5 moles of N_{2} react completely, how many moles of NH_{3} are formed?

$$
\frac{2.5}{1}=\frac{x}{2} \quad x=2 \times 2.5=5.0 \mathrm{molNHz}
$$

5) If 9 moles of NH_{3} are formed, how many moles of H_{2} reacted?

$$
\frac{9}{2}=\frac{x}{3} \quad \frac{2 x}{2}=\frac{27}{2}=13,5 \mathrm{~mol} \mathrm{H}
$$

6) If 3.5 moles of NH_{3} are formed, how many moles of N_{2} reacted?

$$
\frac{3.5}{2}=\frac{x}{1} \quad \frac{2 x}{d}=\frac{3.5}{2}=1.75 \mathrm{md} k_{\alpha}
$$

7) How many grams of N_{2} are reacted when 3.5 moles of NH_{3} are formed? step
step

$$
\begin{aligned}
& \text { (2) } \mathrm{gfm} \\
& 2 N=2(14.0067) \\
& \text { Tablet } 20 \\
& \text { given mass }=\text { moles } x_{\mathrm{g}} \mathrm{fm} \\
& =1.75 \times 28.0134 \\
& =28.01349 / \mathrm{mol} \text { fimxnoles }=\frac{\text { given mass }}{\text { eton }} \\
& =49.02 \mathrm{~g} \text { of } \bar{N}_{2}
\end{aligned}
$$

Determining EMPIRICAL Formulas: 5 simplest

 reducedEmpirical Formula = the reduced formula; a formula whose subscripts cannot \dagger be reduced any further

Molecular Formula = the actual formula for a compound; subscripts represent actual quantity of atoms present

* divide subscripts by common factor

Molecular Formula	Empirical Formula	
$\mathrm{N}_{2} \mathrm{O}_{4}$	\rightarrow	
NO_{2}		
$\mathrm{C}_{3} \mathrm{H}_{9}{ }^{2}$	CH_{3}	
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$\mathrm{CH}_{2} \mathrm{O}$	
$\mathrm{B}_{4} \mathrm{H}_{10}$	$\mathrm{~B}_{2} \mathrm{H}_{5}$	
$\mathrm{C}_{5} \mathrm{H}_{12}$	$\mathrm{C}_{5} \mathrm{H}_{12}$	

Practice: Determining empirical formula from molecular formula.

Calculating Empirical Formula from \% Mass (100%)

Step 1: Always assume you have a 100 g sample (The total \% for the compound must $=100$, so we can just change the units from $\%$ to g)
Step 2: Convert grams to moles. (formulas = mole ratios)
Step 3: Divide all mole numbers by the smallest mole number.

$$
\text { Get whole \#'s } \rightarrow \text { Keep the sameratio }
$$

Ex. A compound is 46.2% mass carbon and 53.8% mass nitrogen.
What is its empirical formula?
Step 1: Assume a 100 g sample.
mol $=\frac{\text { mass }}{\text { tm }} \quad \begin{aligned} & 46.2 \% \mathrm{C}=46.2 \mathrm{~g} \mathrm{C} \\ & 53.8 \% \mathrm{~N}=53.8 \mathrm{~g} \mathrm{~N}\end{aligned}$

$$
\begin{aligned}
& \text { mol.t } C=\frac{46.2}{12.011}=3.85 \mathrm{~mol} \mathrm{C} \\
& \text { mold t } N=\frac{53.8}{14.0067}=3.84 \mathrm{~mol} \mathrm{~N}
\end{aligned}
$$

But we must have WHOLE NUMBERS for SUBSCRIPTS.
Step 3: Divide each mole number by the smallest mole number (We will round in this step to the nearest integer if it's super close).

$$
\begin{aligned}
& \text { For } C:=\frac{3.85}{3.84} \mathrm{molc}=1.0026 \\
& \text { For } \mathrm{N}:=\frac{3.84}{3.84} \mathrm{~mol} \mathrm{~N}=1.00
\end{aligned}
$$

So, the empirical formula for our compound is \qquad

Practice: Determine the empirical formula for each compound below.

1) A compound contains $24.0 \mathrm{~g} C$ and $32.0 \mathrm{~g} O$. Calculate its empirical formula. (Hint: start with step 2)

$$
\begin{array}{ll}
\text { mol ot } C=\frac{24}{12.01}=1.998 & C \frac{1.998}{1.998}=1 \\
\text { mol ot } 0=\frac{32}{15.9994}=2.000 & 0 \frac{2.000}{1.998}=1.001 \text { ratio }
\end{array}
$$

2) A compound contains 0.50 moles of carbon for each 1.0 mole of hydrogen. Calculate the empirical formula of this compound. (Hint: start with step 3)

$$
\begin{array}{ll}
C=\frac{0.5}{0.5}=1 \mathrm{~mol} \mathrm{C} \\
H=\frac{1.0}{0.5}=2 \mathrm{~mol} H
\end{array}
$$

3) A compound contains $14.6 \% \mathrm{C}$ and $85.4 \% \mathrm{Cl}$ by mass. Calculate the empirical formula of this compound.

$$
\begin{array}{ll}
\operatorname{mot} \text { ot } C=\frac{14.6}{12.0111}=1.216 & C \frac{1.216}{1.216}=1 \\
m \text { ot ot } C 1=\frac{85.4}{38.543}=2.409 & C 1 \frac{2.409}{1.216}=1.98
\end{array}
$$

4) 32.8% chromium and 67.2% chlorine.

$$
\begin{aligned}
& \text { mol ot } \mathrm{Cr}=\frac{32.8}{51.996}=0.6308 \quad \text { Cr } \frac{0.6308}{0.6308}=1 \\
& \text { mol of } \mathrm{Cl}=\frac{67.2}{35.453}=1.895 \quad \text { cl } \frac{1.895}{0.6308}=3.004
\end{aligned}
$$

ratio
5) 67.1% zinc and the rest is oxygen.

$$
\begin{array}{rlrl}
\text { mol ot } 2 n & =\frac{67.1}{65.39}=1.026 & Z_{n} & =\frac{1.026}{1.026}=1 \sim \frac{2 n O_{2}}{\sim 1.2} \\
\text { mol ot } 0 & =\frac{32.9}{15.9994}=2.056 & 0 & =\frac{2.056}{1.026}=2.003
\end{array}
$$

Determining MOLECULAR Formulas:

So far, we know how to:

1. Find an empirical formula from percent mass
2. Find an empirical formula from a molecular formula

But how do we find out the molecular formula from an empirical formula?

Ex: A compound is $80.0 \% \mathrm{C}$ and $20.0 \% \mathrm{H}$ by mass. If its molecular mass is 75.0 g , what is its empirical formula? What is its molecular formula?

First, we must determine the empirical formula using the 3-step process.

Step 1: Assume a 100 g sample.
$80.0 \% C=80.0 \mathrm{gC}$
$20.0 \% \mathrm{H}=20.0 \mathrm{~g} \mathrm{H}$
Step 2: Convert grams to moles (have grams, need moles)

$$
\begin{array}{ll}
\operatorname{mol}+C=\frac{80}{12.011}=6.66 & C \frac{6.66}{6.66}=1 \\
\text { mol of }=\frac{20}{1.00794}=19.8 & \mathrm{H} \frac{19.8}{6.66}=2.97 \quad \mathrm{rat}^{2.3} \tag{ratio}
\end{array}
$$

Step 3: Divide each mole number by the smallest mole number and round to the nearest integer

For $C:=1$

For $H:=3$

So, the empirical formula for our compound is \qquad

$$
\begin{gathered}
\text { Continued on next page } \\
\downarrow
\end{gathered}
$$

$$
(12.0)+3(1.0)=15.0 \mathrm{~g}
$$

Now we can determine the molecular formula:

- Empirical mass (the mass of 1 mole of C_{3}) $=15.0 \mathrm{~g}$
- Molecular mass $=759 \times$ fromoriginal question
- Molecular mass is 5 times larger than empirical mass $\frac{75}{15}=5$
- Molecular formula must be 5 times larger than empirical formula
- Multiply ALL the subscripts in our empirical formula by

Thus, our molecular formula is

Practice: Answer the questions below in the space provided. SHOW ALL WORK.

1) What is the molecular formula of a compound that has an empirical formula of NO_{2} and molecular mass of 92.0 g ?
Imp form mass

$$
\mathrm{NO}_{2}=46.0 \mathrm{~g}
$$

$(14)+2(16)$

2) A compound is 50% sulfur and 50% oxygen by mass. Calculate the empirical formula. If its molecular mass is 128 g , determine its molecular formula.

$$
\begin{aligned}
& \text { holds }=\frac{50 \mathrm{~g}}{32.065}=1.56 \mathrm{~mol} \\
& y=\frac{1.56}{1.56}=1 \\
& \text { E.f.mas) } \mathrm{SO}_{2}=64 \mathrm{~g} \\
& \mathrm{molof} O=\frac{50 \mathrm{y}}{15.994}=3.13 \mathrm{~mol} \quad 0=\frac{3.13}{1.56}=2.006 \quad \mathrm{sO}_{2}
\end{aligned}
$$

3) A compound is $63.6 \% \mathrm{~N}$ and $36.4 \% \mathrm{O}$ by mass. Calculate its empirical formula. List three possible molecular formulas for this compound.

$\frac{63.6 \mathrm{gN}}{1 \mathrm{~mol} \mathrm{~N}} 1.4 .0067 \mathrm{~g}=\frac{4.54 \mathrm{moN}}{2.28}$

$$
\begin{array}{l|l}
36.4 \mathrm{go} \mathrm{~m}_{\mathrm{mol}} 10 \\
15.994 \mathrm{~g} 25
\end{array} \frac{2.28}{2.28} \mathrm{~mol} 10 \frac{N_{\alpha} 0}{E F}
$$

4) A compound is 92.3% carbon and 7.7% hydrogen by mass. Calculate its empirical formula. If the molecular mass is 78.0 g , determine its molecular formula.
5) A compound is $74.0 \% \mathrm{C}, 8.7 \% \mathrm{H}$, and $17.3 \% \mathrm{~N}$. Calculate its empirical formula. Its molecular mass is 162 g . Determine its molecular formula.
