

Name of Researcher	Equipment/ Experiment	Sketch & Name of Model	Major Idea/Discovery
Dalton	N/A	Cannonball	 All matter is composed of indivisible particles called atoms All atoms of an element are identical in mass and properties. Compounds are formed by a combination of 2 or more atoms Atoms cannot be created, destroyed, or converted during chemical reactions
Thomson	Cathode Ray Tube	Plum Pudding Negative electron plums Positive pudding	Discovered subatomic called the electron
Rutherford	Alpha Emitter/ Gold foil	Nuclear Model	 The atom is mostly empty space At the center of the atom is a dense, positive core called the nucleus
Bohr	N/A	Bohr or Planetary Model	Electrons travel around the nucleus in well-defined paths called <u>ORBITS</u> (like planets in a solar system)
Many Scientists	X-Ray Diffraction	Wave-Mechanical Model	 Electrons have distinct amounts of energy and move in areas called <u>ORBITALS</u> Energy can behave as both waves & particles

History of Atomic Theory

Regents Chemistry

Atomic Theory

Name

- Which statement describes the distribution of charge in an atom?
 - A) A positively charged nucleus is surrounded by one or more positively charged electrons.
 - B) A neutral nucleus is surrounded by one or more positively charged electrons.
 - C) A positively charged nucleus is surrounded by one or more negatively charged electrons.
 - D) A neutral nucleus is surrounded by one or more negatively charged electrons.
- As a result of the gold foil experiment, it was concluded that an atom
 - A) contains a small, dense nucleus
 - B) contains protons, neutrons, and electrons
 - C) is a hard, indivisible sphere
 - D) has positrons and orbitals
- The gold foil experiment led to the conclusion that each atom in the foil was composed mostly of empty space because most alpha particles directed at the foil
 - A) remained trapped in the foil
 - B) were deflected by the nuclei in gold atoms
 - C) were deflected by the electrons in gold atoms
 - D) passed through the foil
- 4. Which conclusion was a direct result of the gold foil experiment?
 - A) An atom is mostly empty space with a dense, positively charged nucleus.
 - B) An atom is composed of at least three types of subatomic particles.
 - C) An electron has a positive charge and is located inside the nucleus.
 - D) An electron has properties of both waves and particles.

- 5. What was concluded about the structure of the atom as the result of the gold foil experiment?
 - A) A positively charged nucleus is surrounded by mostly empty space.
 - B) A negatively charged nucleus is surrounded by positively charged particles.
 - C) A negatively charged nucleus is surrounded by mostly empty space.
 - D) A positively charged nucleus is surrounded by positively charged particles.
- 6. Which sequence represents a correct order of historical developments leading to the modern model of the atom?
 - A) most of the atom is empty space → the atom is a hard sphere → electrons exist in orbitals outside the nucleus
 - B) most of the atom is empty space → electrons exist in orbitals outside the nucleus → the atom is a hard sphere
 - C) the atom is a hard sphere → most of the atom is empty space → electrons exist in orbitals outside the nucleus
 - D) the atom is a hard sphere → electrons exist in orbitals outside the nucleus → most of the atom is empty space
- Experiments performed to reveal the structure of atoms led scientists to conclude that an atom's
 - A) positive charge is evenly distributed throughout its volume
 - B) negative charge is mainly concentrated in its nucleus
 - C) volume is mainly unoccupied
 - D) mass is evenly distributed throughout its volume
- Compared to the entire atom, the nucleus of the atom is
 - A) larger and contains most of the atom's mass
 - B) smaller and contains most of the atom's mass
 - C) smaller and contains little of the atom's mass
 - D) larger and contains little of the atom's mass

Atomic Theory

Base your answer to the following question on Given the table below that shows student's examples of proposed models of the atom:

Proposed	Models	of	the	Atom	
----------	--------	----	-----	------	--

Model	Location of Protons	Location of Electrons
А	in the nucleus	specific shells
В	in the nucleus	regions of most probable location
С	dispersed throughout the atom	specific shells
D	dispersed throughout the atom	regions of most probable location

Which model correctly describes the locations of protons and electrons in the wave-mechanical model of the atom?

A) A B) B C) C

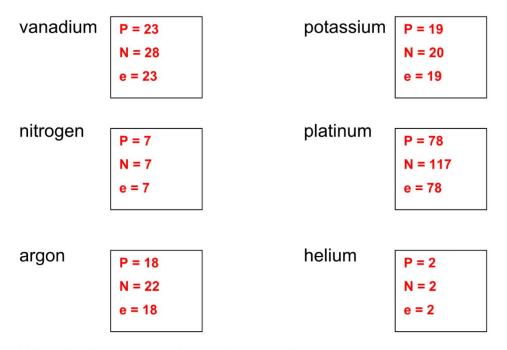
D) *D*

10. An orbital of an atom is defined as the most probable location ofA) an electron B) a positron	13. Which statement correctly describes the charge of the nucleus and the charge of the electron cloud of an atom?
 C) a proton D) a neutron 11. According to the wave-mechanical model of the atom, electrons in an atom A) travel in defined circles B) are located in orbitals outside the nucleus C) are most likely found in an excited state D) have a positive charge 	 A) The nucleus is negative and the electron cloud is negative. B) The nucleus is positive and the electron cloud is negative. C) The nucleus is positive and the electron cloud is positive. D) The nucleus is negative and the electron cloud is positive.
12. Which group of atomic models is listed in historical order from the earliest to the most recent?A) electron-shell model, hard-sphere model, wave-mechanical model	 14. In the late 1800s, experiments using cathode ray tubes led to the discovery of the A) electron B) neutron C) proton D) positron
 B) hard-sphere model, wave-mechanical model, electron-shell model C) hard-sphere model, electron-shell model, wave-mechanical model D) electron-shell model, wave-mechanical model, hard-sphere model 	 15. A proton has a charge that is opposite the charge of A) an alpha particle B) a neutron C) an electron D) a positron

4

Atomic Structure Worksheet

**Assume all are neutral atoms!


Fill in the blanks in the following worksheet. Please keep in mind that the isotope represented by each space may NOT be the most common isotope or the one closest in atomic mass to the value on the periodic table.

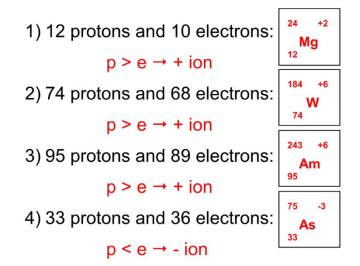
Atomic symbol	Atomic number	Protons	Neutrons	Electrons	Mass number
C	6	6	8	6	14
Mg	12	12	12	12	24
Ga	31	31	40	31	71
Zr	40	40	49	40	89
Zn	30	30	35	30	65
Мо	42	42	56	42	98
W	74	74	109	74	183
Lu	71	71	105	71	176
Am	95	95	148	95	243
Cr	24	24	27	24	51
Bi	83	83	126	83	209
Th	90	90	142	90	232
Md	101	101	158	101	259
Se	34	34	46	34	80
Zr	40	40	51	40	91
L					

Notice there are two different atoms of zirconium (Zr) listed. They have drastically different mass numbers. What are these two therefore considered to be in relation to one another? <u>They are ISOTOPES</u>

Atomic Theory- Neutral Atoms and their subatomic parts

How many **protons**, **neutrons**, **and electrons** are present in the following neutral atoms?

What is the name of the element that has neutral atoms that contain


5 protons?	16 electrons?
<mark>Boron</mark>	Sulfur
17 protons?	32 electrons?
Chlorine	Germanium
25 protons?	1 electron?
<mark>Manganese</mark>	<mark>Hydrogen</mark>
82 protons?	8 electrons?
Lead	<mark>Oxygen</mark>
92 protons?	2 electrons?
<mark>Uranium</mark>	<mark>Helium</mark>

Element	Symbol	Atomic Number	# of Protons	# of Neutrons	Mass Number (amu)	# of Electrons
Hydrogen	Н	1	1	1	2	1
Helium	Не	2	2	2	4	2
Sodium	Na	11	11	12	23	11
Potassium	K	19	19	20	39	19
Calcium	Ca	20	20	20	40	20
Iron	Fe	26	26	30	56	26
Rubidium	Rb	37	37	49	86	37
Carbon	С	6	6	6	12	6
Xenon	Xe	54	54	77	131	54
Phosphorus	Р	15	15	16	31	15
Astatine	At	85	85	126	211	85
Nitrogen	N	7	7	7	14	7
Copper	Cu	29	29	35	64	29
Neon	Ne	10	10	10	20	10
Vanadium	V	23	23	27	50	23
Lithium Ion	Li ⁺	3	3	3	6	2

Complete the following chart: (assume the overall charge on all atoms = 0....except the last one!)

<u>**P**, n, e of ions</u> **IMPORTANT**If the mass number is not given to you, round the atomic mass that you find on the Periodic Table for that element.

Write the full chemical symbol for the ion with:

Determine the number of p, n, e for the following ions:

Cu ²⁺	Li⁺	O ²⁻
p = 29	p = 3	p = 8
n = 35	n = 4	n = 8
e = 27	e = 2	e = 10
Cl-	Al ³⁺	l ⁷⁺
Cl ⁻ p = 17	Al ³⁺ p = 13	⁷⁺ p = 53

	# protons	# electrons	# neutrons	Atomic #	Mass #
Lithium ¹⁺	3	2	4	3	7
Phosphorus ³⁻	15	18	16	15	31
Vanadium ⁰	23	23	28	23	51
Krypton ⁰	36	36	48	36	84
Barium ⁴⁺	56	52	81	56	137
Uranium ⁵⁻	92	97	146	92	238

	ATOM or ION?	PROTONS	NEUTRONS	ELECTRONS	MASS NUMBER	NUCLEAR CHARGE
¹⁵ N	АТОМ	7	8	7	15	7
Cu ⁺²	ION	29	35	27	64	29
⁸ B+3	ION	5	3	2	8	5
¹⁷ O	АТОМ	8	9	8	17	8
F-1	ION	9	10	10	19	9
²⁰⁶ Pb	АТОМ	82	124	82	206	82
²⁰⁸ Pb	АТОМ	82	126	82	208	82
Ag⁺1	ION	47	61	46	108	47
Zn⁺²	ION	30	35	28	65	30
Mg	АТОМ	12	12	12	24	12
S ⁻²	ION	16	16	18	32	16

For the following atoms/ions determine the number of protons, neutrons, electrons, mass number, and nuclear charge.

Question: Which of the above atoms are isotopes of one another? Explain how you know this. <u>Pb-206 and Pb-208</u>, because they are the same element with a different mass number (or a different number of neutrons)

	ATOM or ION?	PROTONS	NEUTRONS	ELECTRONS	MASS NUMBER	NUCLEAR CHARGE
Al ⁺³	Ion	13	14	10	27	13
³⁷ Cl	Atom	17	20	17	37	17
²³ Na ⁺¹	Ion	11	12	10	23	11
He	Atom	2	2	2	4	2
¹⁵ O ⁻²	Ion	8	7	10	15	8
¹⁴ C	Atom	6	8	6	14	6
C-12	Atom	6	6	6	12	6
Au⁺ ³	Ion	79	118	76	197	79
U	Atom	92	146	92	238	92
²²² Rn	Atom	86	136	86	222	86
Cu ⁺¹	Ion	29	35	28	64	29
Cu⁺²	Ion	29	35	27	64	29

Question: Which of the above atoms are isotopes of one another? Explain how you know this. <u>C-12 & C-14 → Same element, different mass #</u>

Untitled.notebook

Calculate the atomic mass of each of the following isotopes. SHOW ALL WORK.

	Element	Mass	Percent Abundance
1)	copper-63 copper-65	62.9396 amu 64.9278 amu	69.17% 30.83%
			63.5525 amu
2)	uranium-235 uranium-238	235.0439 amu 238.0510 amu	0.72% 99.28%
		L	238.029 amu
3)	hydrogen-1 hydrogen-2	1.0078 amu 2.0140 amu	99.985% 0.015%
		L	1.00795 amu
4)	element Q-8 element Q-9 element Q-10	8.0 amu 9.0 amu 10.0 amu	10.0% 20.0% 70.0%
		L	9.6 amu

w	eighted Averages HW(SHOW ALL WORK!) Name	
	*You can round the masses given to you or use them as given - j	ust be consistent!
1)	Element X exists in three isotopic forms. The isotopic mixture con 20.0% ^{11}X , and 70.0% ^{12}X . What is the average atomic mass of this	
		11.6 amu
2)	Element Y exists in three isotopic forms. The Isotopic mixture co 65.0% ²² X, and 20.0% ²³ X. That is the average atomic mass of this	
		22.05 amu

	show all work. Lastly, identify the element.	10.8 amu
	abundance is 80.1%. From this data, calculate the atomic mass of the ele	ement and
	amu and its abundance is 19.9%; Isotope B has a mass of 11.0093 amu and	d its
3)	A mystery element occurs in nature as two isotopes. Isotope A has a ma	ss of 10.0130

4) A mystery element occurs in nature as two isotopes. Isotope A has a mass of 62.939598 amu and its abundance is 69.17%; Isotope B has a mass of 64.927793 amu and its abundance is 30.83%. From this data, calculate the atomic mass of the element and show all work. Lastly, identify the element.

63.56 amu

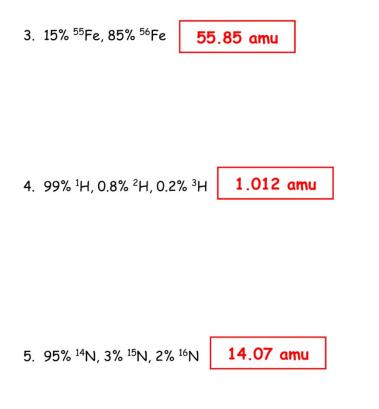
5) A mystery element occurs in nature as three isotopes. Isotope A has a mass of 15.994915 amu and its abundance is 99.762%; Isotope B has a mass of 16.999132 amu and its abundance is 0.0380%; Isotope C has a mass of 17.999160 amu and its abundance is 0.2000%. From this data, calculate the atomic mass of the element and show all work. Lastly, identify the element.

16.0 amu

Isotopes and Average Atomic Mass

Example: A sample of cesium is 75% ¹³³Cs, 20% ¹³²Cs, and 5% ¹³⁴Cs. What is the average atomic mass?

Determine the average atomic mass of the following mixtures of isotopes.


1. 80% ¹²⁷I, 17% ¹²⁶I, 3% ¹²⁸I

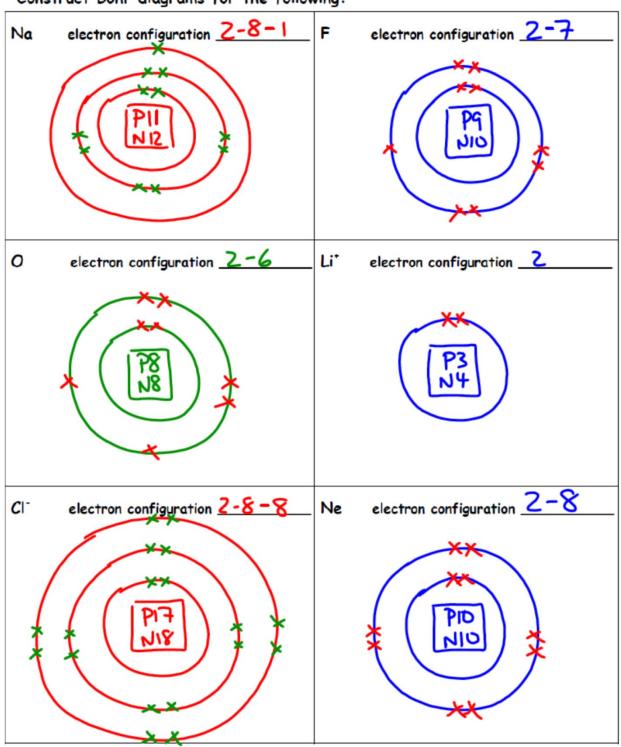
126.86 amu

2. 50% ¹⁹⁷Au, 50% ¹⁹⁸Au

197.5 amu

Untitled.notebook

6. 98% ¹²C, 2% ¹⁴C


12.04 amu

Regents Chemistry

Name _____

Principal Energy Level Worksheet

Element	e-configuration			
Carbon	2-4	1s <mark>1/</mark> 2s <mark>1/</mark> 2p <u>1_1</u>	OR	15 <mark>1/</mark> 251_2p1_1_1_
Helium	2	1s 1/2		
Neon	2-8	1s <mark>1/</mark> 2s <mark>1/</mark> 2p <mark>1/1/ 1/</mark>		
Oxygen	2-6	$\frac{1s \frac{1}{2}}{2s \frac{1}{2}} 2p \frac{1}{2} \frac{1}{2} \frac{1}{2}$		
Sulfur	2-8-6	$ \begin{array}{c} 1s \frac{1}{2} \\ 2s \frac{1}{2} \\ 3s \frac{1}{2} \\ 3p \frac{1}{2} \\ 3p \frac{1}{2} \\ 1 \\ 3p \\ 1 $		
Aluminum	2-8-3	$\frac{1s \frac{1}{2}}{2s \frac{1}{2}} \frac{2p \frac{1}{2} \frac{1}{2} \frac{1}{2}}{3s \frac{1}{2}} \frac{2p \frac{1}{2} \frac{1}{2} \frac{1}{2}}{3p \frac{1}{2} \frac{1}{2}} \frac{3d}{2}$		
Sodium	2-8-1	$ \begin{array}{c} 1s \\ 1s \\ 2s \\ 1 \\ 2s \\ 1 \\ 2p \\ 1 \\ 1 \\ 1 \\ 2p \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2p \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2p \\ 1 \\ 1 \\ 1 \\ 1 \\ 2p \\ 1 \\ 1 \\ 1 \\ 1 \\ 2p \\ 1 \\ 1 \\ 2p \\ 1 \\ 1 \\ 1 \\ 2p \\ 1 \\ 2p \\ 1 \\ 1 \\ 1 \\ 2p \\ 2p$		
Lithium	2-1	1s <mark>1/</mark> 2s 1_ 2p		

Construct Bohr diagrams for the following:

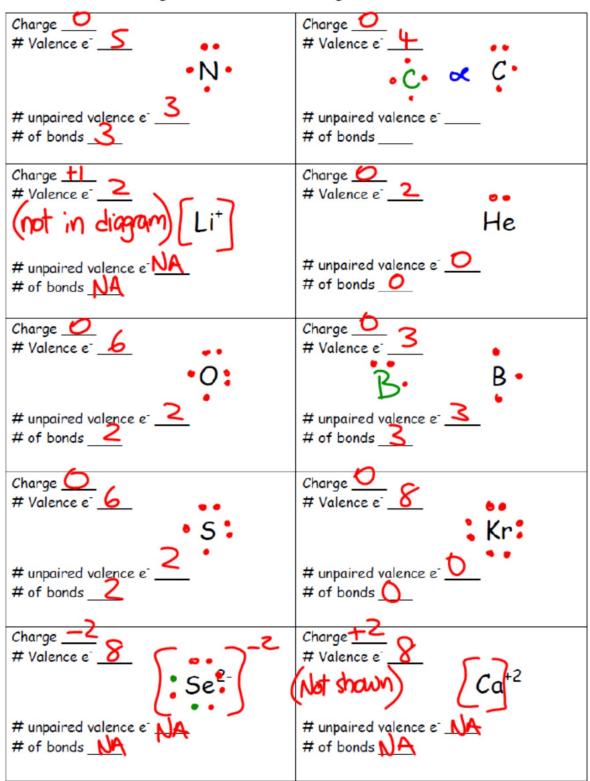
Regents Chemistry

Bohr Model & e- Configuration

1. An atom that has an electron configuration of 9. The maximum number of electrons that a single $1s^22s^22p^63s^23p^63d^54s^2$ is classified as orbital of the 3d sublevel may contain is A) a transition element A) 5 **B)** 2 C) 3 D) 4 B) a noble gas element 10. Which of the following electron configurations C) an alkaline earth metal represents an atom having the greatest nuclear D) an alkali metal charge? 2. The electron configuration of an atom in the A) 2-8 B) 2-8-6 ground state is 2-4. The total number of occupied C) 2-8-1 D) 2-8-7 principal energy levels in this atom is 11. What is the highest principal energy level for an A) 1 **B)** 2 D) 4 C) 3 electron in an atom of sulfur in the ground state? 3. In the wave-mechanical model, an orbital is a A) 1 B) 2 C) 3 D) 4 region of space in an atom where there is 12. In a calcium atom in the ground state, the A) a high probability of finding a neutron electrons that possess the *least* amount of energy B) a high probability of finding an electron are located in the C) a circular path in which electrons are found A) second electron shell D) a circular path in which neutrons are found B) first electron shell An atom with the electron configuration 2-8-8-2 C) third electron shell has an incomplete D) fourth electron shell A) 2nd principal energy level 13. Which atom in the ground state has an outermost B) 3s sublevel electron with the most energy? C) 3rd principal energy level A) K B) Na C) Cs D) Li D) 2s sublevel 14. Which of the following elements in Period 2 has 5. An atom of which element in the ground state all of its sublevels completely filled? contains electrons in the fourth principal energy A) N B) Li C) B D) Ne level? 15. An Mg²⁺ ion has the same electron configuration A) He B) Kr C) Ne D) Ar as 6. Which atom in the ground state has a partially A) Ar⁰ B) Na⁰ C) Ca²⁺ D) F⁻ filled second electron shell? 16. Which atom in the ground state has five electrons A) sodium atom B) hydrogen atom in its outer level and ten electrons in its kernel? C) potassium atom D) lithium atom A) C B) Si C) C1 D) P 7. What is the electron configuration of a sulfur atom in the ground state? 17. Which phrase describes an atom? A) 2-6 B) 2-4 A) a negatively charged electron cloud C) 2–8–4 D) 2-8-6 surrounding a negatively charged nucleus B) a positively charged electron cloud 8. What is the maximum number of electrons that can surrounding a negatively charged nucleus occupy the second principal energy level? C) a positively charged electron cloud A) 18 B) 32 C) 8 D) 6 surrounding a positively charged nucleus D) a negatively charged electron cloud surrounding a positively charged nucleus

Bohr Model & e	e- Configuration
 18. Which represents the correct electron distribution of a transition element in the ground state? A) 2-8-8-2 B) 2-8-18-2 C) 2-8-18-3 D) 2-8-8-1 19. What is the maximum number of electrons in the third shell of an atom? A) 6 B) 9 C) 3 D) 18 20. Which element has atoms with only one completely filled principal energy level? A) As B) P C) N D) Sb 	 elements have the same A) number of oxidation states B) atomic mass C) atomic number D) number of occupied energy shells 27. Which of the following sublevels has the highest energy? A) 2s B) 2p C) 3p D) 3s 28. Which sublevels are occupied in the outermost
 21. An atom contains a total of 25 electrons. When the atom is in the ground state, how many different principal energy levels will contain electrons? A) 1 B) 2 C) 3 D) 4 	principal energy level of an argon atom in the ground state? A) $2s$ and $3p$ B) $2p$ and $3d$ C) $3s$ and $3d$ D) $3s$ and $3p$
 22. Which atom in the ground state has the same electron configuration as a calcium ion, Ca²⁺, in the ground state? A) Ar B) Ne C) K D) Mg 	
23. Which statement describes the relative energy of the electrons in the shells of a calcium atom?A) An electron in the third shell has more energy than an electron in the second shell.	
 B) An electron in the first shell has more energy than an electron in the second shell. C) An electron in the third shell has less energy than an electron in the second shell. D) An electron in the first shell has the same amount of energy as an electron in the second shell. 	
24. Which electron configuration represents an atom of an element having a completed third principal energy level?	
 A) 2-8-10-2 B) 2-8-6-2 C) 2-8-18-2 D) 2-8-2 25. What is the electron configuration for Be²⁺ ions? A) 2-2 B) 1 C) 2-1 D) 2 	

Bohr Model & e- Configuration


29. Given the table below that shows student's examples of proposed models of the atom:

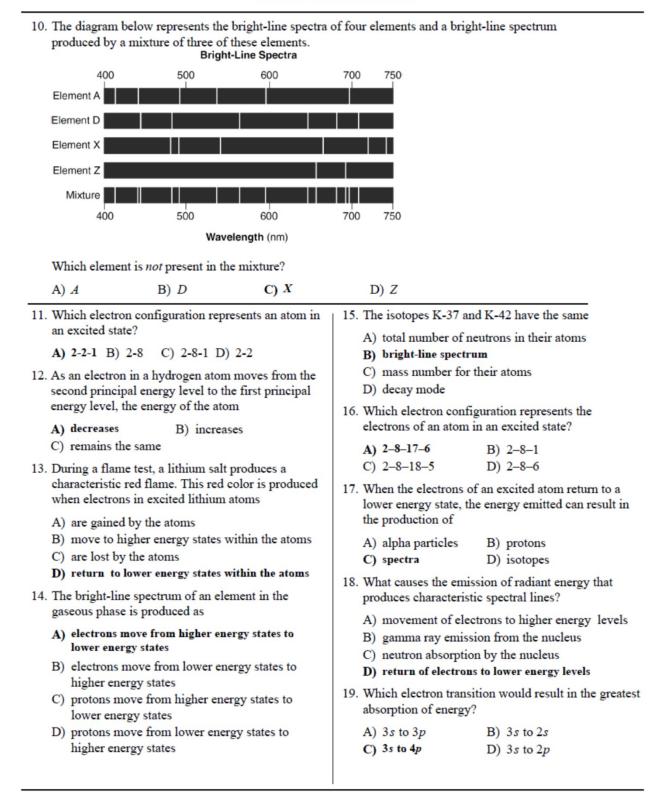
Model	Location of Protons	Location of Electrons
А	in the nucleus	${ m specific shells}$
В	in the nucleus	#174 ions of most probable location
С	dispersed throughout the atom	specific shells
D	dispersed throughout the atom	#174 ions of most probable location

${\bf Proposed}\,{\bf Models}\,{\bf of}\,{\bf the}\,{\bf Atom}$

Which model correctly describes the locations of protons and electrons in the wave-mechanical model of the atom?

A) A B) B	C) <i>C</i>	D) <i>D</i>
 30. Which of the following sugreatest number of orbitals A) d B) f C) p 	\$?	34. What is the maximum number of electrons that can occupy the fourth principal energy level (shell) of an atom?
31. The principal quantum nu- electron of an atom in the What is the total number of energy levels contained in	ground state is $n = 3$. f occupied principal	 A) 6 B) 18 C) 32 D) 8 35. What is the total number of valence electrons in an atom with the electron configuration 1s²2s²2p ⁶3s²3p³?
A) 1 B) 2 C) 3	D) 4	A) 5 B) 11 C) 3 D) 15
	 Which is the electron dot symbol for an atom with an electron configuration of 1s²2s²2p³? A) is a probability of the proba	36. What is the total number of completely filled principal energy levels in an atom of argon in the ground state?
	. 27 .X.	A) 1 B) 2 C) 3 D) 4
33. What is the total number of sublevels principal energy level?		37. What is the maximum number of electrons that may be present in the second principal energy
A) 1 B) 2 C) 3	D) 4	level of an atom?
		A) 8 B) 2 C) 18 D) 32

Draw Lewis Dot Diagrams for the following:


Bohr and	Lewis Dot Diagrams	Name		
Element	Electron Configuration	Bohr Diagram	# Valence e ⁻ # Kernel e ⁻	Lewis Dot Diagram
Carbon p = 6 n = 6 e = 6	2-4	The second secon	Valence e ⁻ = 4 Kernel e ⁻ = 2	·ċ· ċ·
Oxygen p = <mark>8</mark> n = 8 e = 8	2-6		Valence e ⁻ = 6 Kernel e ⁻ = 2	• 0:
Sodium p = 1 n = 1 2 e = 1	2-8-1		Valence e ⁻ = Kernel e ⁻ = 10	Na
Neon p = 10 n = 10 e = 10	2-8	PIO NIO	Valence e ⁻ = 8 Kernel e ⁻ = 2	:NE:

Regents Chemistry

Ground vs. Excited State

1. Given the bright-line spectra of three elements and the spectrum of a mixture formed from at least two of these elements:

Bright-Line Spect	ra
Element D	
Element E	
Element G	
Mixture	
750 nm Which elements are present in this mixture? A) E and D , only B) D , E , and G C) E and G , G	360 nm
	only D) D and G, only
When an excited electron in an atom moves to the ground state, the electron	5. Which statement describes how an atom in the ground state becomes excited?
 A) absorbs energy as it moves to a lower energy state 	A) The atom absorbs energy, and one or more electrons move to a lower electron shell.
B) emits energy as it moves to a lower energy state	B) The atom releases energy, and one or more
C) absorbs energy as it moves to a higher energy state	electrons move to a lower electron shell. C) The atom releases energy, and one or more
D) emits energy as it moves to a higher energy state	electrons move to a higher electron shell.
An electron in a sodium atom gains enough energy to move from the second shell to the third shell. The	D) The atom absorbs energy, and one or more electrons move to a higher electron shell.
sodium atom becomes	6. Which electron configuration represents an excited
A) a positive ion	state for a potassium atom?
B) a negative ionC) an atom in the ground state	A) 2-8-7-2 B) 2-8-8-1 C) 2-8-8-2 D) 2-8-7-1
D) an atom in an excited state	7. Which electron configuration represents an atom of
4. A bromine atom in an excited state could have an	aluminum in an excited state?
electron configuration of	A) 2-8-6 B) 2-8-3 C) 2-7-7 D) 2-7-4
A) 2-8-18-6 B) 2-8-18-7 C) 2-8-17-7 D) 2-8-17-8	 An electron in an atom moves from the ground state to an excited state when the energy of the electron
	A) decreases B) increases C) remains the same
	9. When compared with the energy of an electron in the first shell of a carbon atom, the energy of an electron in the second shell of a carbon atom is
	A) greaterB) the sameC) less

Ground vs. Excited State

26

Regents Chemistry Electron Configuration Worksheet

Name _____

For the questions 1-10, assume all atoms are neutral. Use the electron configurations to determine the identity of the element and whether it is in the ground or excited state.

Elec	tron Configuration	Identity	Ground/Excited
1.	2-8-1	Na	GROUND
2.	2-8-16-3	Cu	EXCITED
3.	2-8-2	Mg	GROUND
4.	2-7-8	Cl	EXCITED
5.	1-3	Be	EXCITED
6.	2-8-6	5	GROUND
7.	-18-32-18-4	РЬ	GROUND
8.	-18-32-17-3	Hg	EXCITED
9.	2-7	F	GROUND
10.	1-8	F	EXCITED

Give an electron configuration for the following:

11. Sulfur in its ground state.	2-8-6
12. Helium in an excited state.	1-1

- 13. Give the ground state electron configuration for calcium. 2-8-8-2
- 14. Give the correct electron configuration for the Ca^{+2} ion. 2-8-8
- 15. How many valence electrons are there in atom of bromine? 7
- 16. How many valence electrons are there in a Cl⁻ ion? 8
- 17. How many kernel electrons are there in a phosphorus atom? 10
- 18. How many valence electrons are there in a neon atom? 8
- 19. How many principal energy levels are there in a iron atom? 4